1
|
Plunkard JCM, Jimenez IA, Tarwater PM, Craney MC, Villano JS. Pharmacokinetics of Extended-release Buprenorphine and Clinical Efficacy for Postoperative Pain Management in the Domestic Ferret ( Mustela putorius furo). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63. [PMID: 39164072 PMCID: PMC11467869 DOI: 10.30802/aalas-jaalas-24-000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 08/22/2024]
Abstract
Buprenorphine hydrochloride (Bup-HCl) is a common injectable opioid analgesic. In ferrets, Bup-HCl must be administered every 8 to 12 h to maintain clinical efficacy. Extended-release analgesics offer multiple advantages, including reduced handling and injection frequency, improved compliance, and increased protection from end-of-dose failure. Although efficacy of extended-release buprenorphine formulations has been demonstrated in other species, their use in the domestic ferret has not been investigated. In this study, we evaluated the pharmacokinetics of a compounded polymeric formulation of buprenorphine (Bup-ER) and a pharmaceutical-grade, FDA-indexed liposomal suspension (Bup-XR). Two doses each of Bup-ER (0.12 and 0.2 mg/kg) and Bup-XR (0.2 and 0.6 mg/kg SC) were administered to young adult female ferrets and plasma concentrations were measured between 0 and 96 h (n = 4 animals per timepoint). All doses of both drugs achieved therapeutic plasma levels by 30 min. Furthermore, high-dose Bup-XR maintained therapeutic levels for 72 h, followed by high-dose Bup-ER (less than 48 h), low-dose Bup-XR (24 h), and low-dose Bup-ER (less than 24 h). In this study, we also developed a pain scoring system and utilized this to compare analgesic efficacy between single high-dose Bup-XR (0.6 mg/kg SC) and a standard postoperative course of Bup-HCl (0.02 mg/kg SC every 10 to 12 h for 8 doses) after ovariohysterectomy. Ferrets receiving Bup-XR had significantly lower respiratory rate and posture scores in the first 24 h postoperatively than did those that received Bup-HCl and were less likely to react to palpation of the surgical incision. Of note, ferrets that received high-dose Bup-ER had a significantly higher incidence of injection site reactions than ferrets that received Bup-HCl (P = 0.0137). This study demonstrates that a single dose of Bup-XR (0.6 mg/kg SC) is a safe and effective analgesic in female ferrets, with a duration of action up to 72 h and minimal side effects, offering a refinement to analgesia in this species.
Collapse
Key Words
- auc, area under the curve
- bup-er, polymeric extended-release buprenorphine
- bup-xr, liposomal extended-release buprenorphine
- bup-hcl, buprenorphine hcl
- isr, injection site reaction
- lloq, lower limit of quantification
- nsaid, nonsteroidal anti-inflammatory drugs
- ohe, ovariohysterectomy
- pk, pharmacokinetic(s)
- tpc, therapeutic plasma concentration
Collapse
Affiliation(s)
- Jessica C M Plunkard
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Tarwater
- School of Public Health, Texas A&M University, College Station, Texas; and
| | - Morgan C Craney
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jason S Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Jimenez IA, Craney MC, Painter MC, Burch-Strong KE, Plunkard JCM, Villano JS, Hopper LM. Behavioral Evaluation of Laboratory-housed Ferrets ( Mustela Putorius Furo) in Different Enclosure Sizes. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:382-394. [PMID: 37673662 PMCID: PMC10597328 DOI: 10.30802/aalas-jaalas-23-000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
The domestic ferret (Mustela putorius furo) is a common research model for infectious disease and behavioral studies. Ferrets are social animals that are commonly pair-housed. The United States has no species-specific regulatory standards for housing ferrets. Optimal enclosure dimensions have also not been investigated in this species, and cage sizes reported in the literature vary. Adequate space is an important animal welfare consideration, as smaller cages have been linked to increased incidence of stress- or boredom-related behaviors in some species. Here, we evaluated activity budget and space utilization in 2 different enclosure sizes for pair-housed female ferrets (n = 12). Single cages measured 78.7×78.7×45.7cm; double cages were comprised of 2 single cages connected by a short tunnel measuring 17.8 cm. Three pairs of ferrets were housed in each cage size and continuous video recordings were captured for 2 wk prior to crossover to the other cage size. The overall activity budget was similar between groups, with the predominant behavior being inactivity (89%). Stereotypic behaviors, such as cage biting or escape attempts, were infrequent (<0.1%) in both groups. Ferrets in double cages remained in the same cage as their partner 96% of the time, suggesting that social support is very valuable. Our results suggest that ferrets in both cage sizes experienced satisfactory welfare conditions. Our findings also suggest that while cage size is not the only determinant of conspecific aggression, larger cages may be an effective intervention to ameliorate aggression in certain ferrets based on signalment or behavioral history, with particular utility as a potential alternative to re-pairing or single-housing. This study provides valuable information to guide animal care and use programs regarding appropriate ferret housing.
Collapse
Affiliation(s)
- Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Morgan C Craney
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melissa C Painter
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kayla E Burch-Strong
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica C M Plunkard
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jason S Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lydia M Hopper
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Pasternak T, Tadin D. Linking Neuronal Direction Selectivity to Perceptual Decisions About Visual Motion. Annu Rev Vis Sci 2021; 6:335-362. [PMID: 32936737 DOI: 10.1146/annurev-vision-121219-081816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psychophysical and neurophysiological studies of responses to visual motion have converged on a consistent set of general principles that characterize visual processing of motion information. Both types of approaches have shown that the direction and speed of target motion are among the most important encoded stimulus properties, revealing many parallels between psychophysical and physiological responses to motion. Motivated by these parallels, this review focuses largely on more direct links between the key feature of the neuronal response to motion, direction selectivity, and its utilization in memory-guided perceptual decisions. These links were established during neuronal recordings in monkeys performing direction discriminations, but also by examining perceptual effects of widespread elimination of cortical direction selectivity produced by motion deprivation during development. Other approaches, such as microstimulation and lesions, have documented the importance of direction-selective activity in the areas that are active during memory-guided direction comparisons, area MT and the prefrontal cortex, revealing their likely interactions during behavioral tasks.
Collapse
Affiliation(s)
- Tatiana Pasternak
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA; , .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.,Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Duje Tadin
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA; , .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.,Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14642, USA.,Department of Ophthalmology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
4
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
5
|
Jang J, Song M, Paik SB. Retino-Cortical Mapping Ratio Predicts Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. Cell Rep 2021; 30:3270-3279.e3. [PMID: 32160536 DOI: 10.1016/j.celrep.2020.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
In the mammalian primary visual cortex, neural tuning to stimulus orientation is organized in either columnar or salt-and-pepper patterns across species. For decades, this sharp contrast has spawned fundamental questions about the origin of functional architectures in visual cortex. However, it is unknown whether these patterns reflect disparate developmental mechanisms across mammalian taxa or simply originate from variation of biological parameters under a universal development process. In this work, after the analysis of data from eight mammalian species, we show that cortical organization is predictable by a single factor, the retino-cortical mapping ratio. Groups of species with or without columnar clustering are distinguished by the feedforward sampling ratio, and model simulations with controlled mapping conditions reproduce both types of organization. Prediction from the Nyquist theorem explains this parametric division of the patterns with high accuracy. Our results imply that evolutionary variation of physical parameters may induce development of distinct functional circuitry.
Collapse
Affiliation(s)
- Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min Song
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Danka Mohammed CP, Khalil R. Postnatal Development of Visual Cortical Function in the Mammalian Brain. Front Syst Neurosci 2020; 14:29. [PMID: 32581733 PMCID: PMC7296053 DOI: 10.3389/fnsys.2020.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
This review aims to discuss (1) the refinement of mammalian visual cortical circuits and the maturation of visual functions they subserve in primary visual cortex (V1) and other visual cortical areas, and (2) existing evidence supporting the notion of differential rates of maturation of visual functions in different species. It is well known that different visual functions and their underlying circuitry mature and attain adultlike characteristics at different stages in postnatal development with varying growth rates. The developmental timecourse and duration of refinement varies significantly both in V1 of various species and among different visual cortical areas; while basic visual functions like spatial acuity mature earlier requiring less time, higher form perception such as contour integration is more complex and requires longer postnatal time to refine. This review will highlight the importance of systematic comparative analysis of the differential rates of refinement of visual circuitry and function as that may help reveal underlying key mechanisms necessary for healthy visual development during infancy and adulthood. This type of approach will help future studies to establish direct links between various developmental aspects of different visual cortical areas in both human and animal models; thus enhancing our understanding of vision related neurological disorders and their potential therapeutic remedies.
Collapse
Affiliation(s)
- Chand Parvez Danka Mohammed
- Biosciences and Bioengineering Research Institute (BBRI), American University of Sharjah, Sharjah, United Arab Emirates
| | - Reem Khalil
- Biosciences and Bioengineering Research Institute (BBRI), American University of Sharjah, Sharjah, United Arab Emirates.,Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|