1
|
Douville CO. Reality and imagination intertwined: A sensorimotor paradox interpretation. Biosystems 2024; 246:105350. [PMID: 39433120 DOI: 10.1016/j.biosystems.2024.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
As a hypothesis on the origins of mind and language, the evolutionary theory of the sensorimotor paradox suggests that capacities for imagination, self-representation and abstraction would operate from a dissociation in what is known as the forward model. In some studies, sensory perception is understood as a system of prediction and confirmation (feedforward and feedback processes) that would share common yet distinct and overlapping neural networks with mental imagery. The latter would then mostly operate through internal feedback processes. The hypothesis of our theory is that dissociation and parallelism between those processes would make it less likely for imaginary prediction to match and simultaneously coincide with any sensory feedback, contradicting the stimulus/response pattern. The gap between the two and the effort required to maintain this gap, born from the development of bipedal stance and a radical change to our relation to our own hands, would be the very structural foundation to our capacity to elaborate abstract thoughts, by partially blocking and inhibiting motor action. Mental imagery would structurally be dissociated from perception, though maintaining an intricated relation of interdependence. Moreover, the content of the images would be subordinate to their function as emotional regulators, prioritising consistency with some global, conditional and socially learnt body-image. As a higher-level and proto-aesthetic function, we can speculate that the action and instrumentalisation of dissociating imagination from perception would become the actual prediction and their coordination, the expected feedback.
Collapse
|
2
|
Dijkstra N. Nuancing the heterarchical theory of visual mental imagery. Phys Life Rev 2024; 49:10-11. [PMID: 38452665 DOI: 10.1016/j.plrev.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Affiliation(s)
- N Dijkstra
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square WC1N 3AR, United Kingdom.
| |
Collapse
|
3
|
Gu J, Deng K, Luo X, Ma W, Tang X. Investigating the different mechanisms in related neural activities: a focus on auditory perception and imagery. Cereb Cortex 2024; 34:bhae139. [PMID: 38629796 DOI: 10.1093/cercor/bhae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Neuroimaging studies have shown that the neural representation of imagery is closely related to the perception modality; however, the undeniable different experiences between perception and imagery indicate that there are obvious neural mechanism differences between them, which cannot be explained by the simple theory that imagery is a form of weak perception. Considering the importance of functional integration of brain regions in neural activities, we conducted correlation analysis of neural activity in brain regions jointly activated by auditory imagery and perception, and then brain functional connectivity (FC) networks were obtained with a consistent structure. However, the connection values between the areas in the superior temporal gyrus and the right precentral cortex were significantly higher in auditory perception than in the imagery modality. In addition, the modality decoding based on FC patterns showed that the FC network of auditory imagery and perception can be significantly distinguishable. Subsequently, voxel-level FC analysis further verified the distribution regions of voxels with significant connectivity differences between the 2 modalities. This study complemented the correlation and difference between auditory imagery and perception in terms of brain information interaction, and it provided a new perspective for investigating the neural mechanisms of different modal information representations.
Collapse
Affiliation(s)
- Jin Gu
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, No. 999, Xi'an Road, Pidu District, Chengdu, China
- Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, No. 999, Xi'an Road, Pidu District, Chengdu, China
| | - Kexin Deng
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, No. 999, Xi'an Road, Pidu District, Chengdu, China
| | - Xiaoqi Luo
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, No. 999, Xi'an Road, Pidu District, Chengdu, China
| | - Wanli Ma
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, No. 999, Xi'an Road, Pidu District, Chengdu, China
| | - Xuegang Tang
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, No. 999, Xi'an Road, Pidu District, Chengdu, China
| |
Collapse
|
4
|
Stein T, van Gaal S, Fahrenfort JJ. How (not) to demonstrate unconscious priming: Overcoming issues with post-hoc data selection, low power, and frequentist statistics. Conscious Cogn 2024; 119:103669. [PMID: 38395013 DOI: 10.1016/j.concog.2024.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
One widely used scientific approach to studying consciousness involves contrasting conscious operations with unconscious ones. However, challenges in establishing the absence of conscious awareness have led to debates about the extent and existence of unconscious processes. We collected experimental data on unconscious semantic priming, manipulating prime presentation duration to highlight the critical role of the analysis approach in attributing priming effects to unconscious processing. We demonstrate that common practices like post-hoc data selection, low statistical power, and frequentist statistical testing can erroneously support claims of unconscious priming. Conversely, adopting best practices like direct performance-awareness contrasts, Bayesian tests, and increased statistical power can prevent such erroneous conclusions. Many past experiments, including our own, fail to meet these standards, casting doubt on previous claims about unconscious processing. Implementing these robust practices will enhance our understanding of unconscious processing and shed light on the functions and neural mechanisms of consciousness.
Collapse
Affiliation(s)
- Timo Stein
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes J Fahrenfort
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands; Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Barnett B, Andersen LM, Fleming SM, Dijkstra N. Identifying content-invariant neural signatures of perceptual vividness. PNAS NEXUS 2024; 3:pgae061. [PMID: 38415219 PMCID: PMC10898512 DOI: 10.1093/pnasnexus/pgae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Some conscious experiences are more vivid than others. Although perceptual vividness is a key component of human consciousness, how variation in this magnitude property is registered by the human brain is unknown. A striking feature of neural codes for magnitude in other psychological domains, such as number or reward, is that the magnitude property is represented independently of its sensory features. To test whether perceptual vividness also covaries with neural codes that are invariant to sensory content, we reanalyzed existing magnetoencephalography and functional MRI data from two distinct studies which quantified perceptual vividness via subjective ratings of awareness and visibility. Using representational similarity and decoding analyses, we find evidence for content-invariant neural signatures of perceptual vividness distributed across visual, parietal, and frontal cortices. Our findings indicate that the neural correlates of subjective vividness may share similar properties to magnitude codes in other cognitive domains.
Collapse
Affiliation(s)
- Benjy Barnett
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Lau M Andersen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Center of Functionally Integrative Neuroscience, 8000 Aarhus C, Denmark
- Department for Linguistics, Cognitive Science and Semiotics, Aarhus University, 8000 Aarhus C, Denmark
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
6
|
Margolles P, Elosegi P, Mei N, Soto D. Unconscious Manipulation of Conceptual Representations with Decoded Neurofeedback Impacts Search Behavior. J Neurosci 2024; 44:e1235232023. [PMID: 37985180 PMCID: PMC10866193 DOI: 10.1523/jneurosci.1235-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
The necessity of conscious awareness in human learning has been a long-standing topic in psychology and neuroscience. Previous research on non-conscious associative learning is limited by the low signal-to-noise ratio of the subliminal stimulus, and the evidence remains controversial, including failures to replicate. Using functional MRI decoded neurofeedback, we guided participants from both sexes to generate neural patterns akin to those observed when visually perceiving real-world entities (e.g., dogs). Importantly, participants remained unaware of the actual content represented by these patterns. We utilized an associative DecNef approach to imbue perceptual meaning (e.g., dogs) into Japanese hiragana characters that held no inherent meaning for our participants, bypassing a conscious link between the characters and the dogs concept. Despite their lack of awareness regarding the neurofeedback objective, participants successfully learned to activate the target perceptual representations in the bilateral fusiform. The behavioral significance of our training was evaluated in a visual search task. DecNef and control participants searched for dogs or scissors targets that were pre-cued by the hiragana used during DecNef training or by a control hiragana. The DecNef hiragana did not prime search for its associated target but, strikingly, participants were impaired at searching for the targeted perceptual category. Hence, conscious awareness may function to support higher-order associative learning. Meanwhile, lower-level forms of re-learning, modification, or plasticity in existing neural representations can occur unconsciously, with behavioral consequences outside the original training context. The work also provides an account of DecNef effects in terms of neural representational drift.
Collapse
Affiliation(s)
- Pedro Margolles
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia 48940, Spain
| | - Patxi Elosegi
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia 48940, Spain
| | - Ning Mei
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
| | - David Soto
- Basque Center on Cognition, Brain and Language (BCBL), Donostia - San Sebastián, Gipuzkoa 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| |
Collapse
|
7
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
8
|
Dijkstra N, Fleming SM. Subjective signal strength distinguishes reality from imagination. Nat Commun 2023; 14:1627. [PMID: 36959279 PMCID: PMC10036541 DOI: 10.1038/s41467-023-37322-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Humans are voracious imaginers, with internal simulations supporting memory, planning and decision-making. Because the neural mechanisms supporting imagery overlap with those supporting perception, a foundational question is how reality and imagination are kept apart. One possibility is that the intention to imagine is used to identify and discount self-generated signals during imagery. Alternatively, because internally generated signals are generally weaker, sensory strength is used to index reality. Traditional psychology experiments struggle to investigate this issue as subjects can rapidly learn that real stimuli are in play. Here, we combined one-trial-per-participant psychophysics with computational modelling and neuroimaging to show that imagined and perceived signals are in fact intermixed, with judgments of reality being determined by whether this intermixed signal is strong enough to cross a reality threshold. A consequence of this account is that when virtual or imagined signals are strong enough, they become subjectively indistinguishable from reality.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Aging Research, University College London, London, UK
- Department of Experimental Psychology, University College London, London, UK
| |
Collapse
|
9
|
Levinson M, Baillet S. Perceptual filling-in dispels the veridicality problem of conscious perception research. Conscious Cogn 2022; 100:103316. [PMID: 35358869 DOI: 10.1016/j.concog.2022.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Conscious perceptual experiences are expected to correlate with content-specific brain activity. A veridicality problem arises when attempting to disentangle unconscious and conscious brain processes if conscious perceptual contents accurately match the physical nature of the stimulus. We argue that perceptual filling-in, a phenomenon whereby visual information inaccurately spreads across visual space, is a promising approach to circumvent the veridicality problem. Filling-in generates non-veridical although unambiguous percepts dissociated from stimulus input. In particular, the radial uniformity illusion induces a filling-in experience between a central disk and the surrounding periphery. We discuss how this illusion facilitates both the detection of neurophysiological responses and subjective phenomenological monitoring. We report behavioral effects from a large-sample (n = 200) psychophysics study and examine key stimulus parameters that drive the conscious filling-in experience. We propose that these data underpin future hypothesis-driven studies of filling-in to further delineate the neural mechanisms of conscious perception.
Collapse
Affiliation(s)
- Max Levinson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|