1
|
Watamura N, Foiani MS, Bez S, Bourdenx M, Santambrogio A, Frodsham C, Camporesi E, Brinkmalm G, Zetterberg H, Patel S, Kamano N, Takahashi M, Rueda-Carrasco J, Katsouri L, Fowler S, Turkes E, Hashimoto S, Sasaguri H, Saito T, Islam AS, Benner S, Endo T, Kobayashi K, Ishida C, Vendruscolo M, Yamada M, Duff KE, Saido TC. In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds. Nat Neurosci 2025; 28:293-307. [PMID: 39719507 PMCID: PMC11802456 DOI: 10.1038/s41593-024-01829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2024] [Indexed: 12/26/2024]
Abstract
Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages of tauopathy. MAPTInt10+3G>A and MAPTS305N;Int10+3G>A lines show abundant hyperphosphorylated tau in the hippocampus and entorhinal cortex, but they do not develop seed-competent fibrillar structures. Accumulation of hyperphosphorylated tau was accompanied by neurite degeneration, loss of viable synapses and indicators of behavioral abnormalities. Our results demonstrate that neuronal toxicity can occur in the absence of fibrillar, higher-order structures and that tau hyperphosphorylation is probably involved in the earliest etiological events in tauopathies showing isoform ratio imbalance.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
- UK Dementia Research Institute at University College London, London, UK.
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK.
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Mathieu Bourdenx
- UK Dementia Research Institute at University College London, London, UK
| | - Alessia Santambrogio
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Claire Frodsham
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Saisha Patel
- UK Dementia Research Institute at University College London, London, UK
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | | | - Loukia Katsouri
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Stephanie Fowler
- UK Dementia Research Institute at University College London, London, UK
- Nuffield Department of Medicine, Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Oxford, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Afm Saiful Islam
- Queen Square Institute of Neurology, University College London, London, UK
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Katsuji Kobayashi
- Department of Psychiatry, Awazu Neuropsychiatric Hospital, Ishikawa, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Iwade-machi, Japan
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Masahito Yamada
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Kanazawa University, Kanazawa, Japan
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Queen Square Institute of Neurology, University College London, London, UK.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
2
|
Qian Z, Li Y, Ye K. Advancements and challenges in mouse models of Alzheimer's disease. Trends Mol Med 2024; 30:1152-1164. [PMID: 39547883 DOI: 10.1016/j.molmed.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) poses a significant health challenge worldwide, and the development of effective treatments necessitates a comprehensive understanding of its pathophysiology. Mouse models have been instrumental in offering insights into the crucial pathogenesis of AD. However, current models rarely recapitulate all aspects of AD pathology in patients; thus, translating the findings from mouse to human clinical trials has proved to be complex. In this review, we outline the development of some prevalently used AD mice, with a particular emphasis on the latest advances in newly generated models. In addition, we discuss the advantages and limitations in mouse models of AD and their applications in blood-based biomarkers. Finally, we speculate on potential future research directions.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, Guangdong, China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Jiang L, Roberts R, Wong M, Zhang L, Webber CJ, Libera J, Wang Z, Kilci A, Jenkins M, Ortiz AR, Dorrian L, Sun J, Sun G, Rashad S, Kornbrek C, Daley SA, Dedon PC, Nguyen B, Xia W, Saito T, Saido TC, Wolozin B. β-amyloid accumulation enhances microtubule associated protein tau pathology in an APP NL-G-F/MAPT P301S mouse model of Alzheimer's disease. Front Neurosci 2024; 18:1372297. [PMID: 38572146 PMCID: PMC10987964 DOI: 10.3389/fnins.2024.1372297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The study of the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. Methods The humanized APPNL-G-F knock-in mouse line was crossed to the PS19 MAPTP301S, over-expression mouse line to create the dual APPNL-G-F/PS19 MAPTP301S line. The resulting pathologies were characterized by immunochemical methods and PCR. Results We now report on a double transgenic APPNL-G-F/PS19 MAPTP301S mouse that at 6 months of age exhibits robust A plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of A pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. MAPT pathology neither changed levels of amyloid precursor protein nor potentiated A accumulation. Interestingly, study of immunofluorescence in cleared brains indicates that microglial inflammation was generally stronger in the hippocampus, dentate gyrus and entorhinal cortex, which are regions with predominant MAPT pathology. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. m6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Discussion Our understanding of the pathophysiology of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. The APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging, and thus represents a useful new mouse model for the field.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rebecca Roberts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Melissa Wong
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Lushuang Zhang
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Chelsea Joy Webber
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Jenna Libera
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Zihan Wang
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Alper Kilci
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Matthew Jenkins
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Alejandro Rondón Ortiz
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Luke Dorrian
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sherif Rashad
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Sarah Anne Daley
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Brian Nguyen
- LifeCanvas Technologies, Cambridge, MA, United States
| | - Weiming Xia
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Benjamin Wolozin
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
4
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
5
|
Schweighauser M, Murzin AG, Macdonald J, Lavenir I, Crowther RA, Scheres SHW, Goedert M. Cryo-EM structures of tau filaments from the brains of mice transgenic for human mutant P301S Tau. Acta Neuropathol Commun 2023; 11:160. [PMID: 37798679 PMCID: PMC10552433 DOI: 10.1186/s40478-023-01658-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Mice transgenic for human mutant P301S tau are widely used as models for human tauopathies. They develop neurodegeneration and abundant filamentous inclusions made of human mutant four-repeat tau. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the brains of Tg2541 and PS19 mice. Both lines express human P301S tau (0N4R for Tg2541 and 1N4R for PS19) on mixed genetic backgrounds and downstream of different promoters (murine Thy1 for Tg2541 and murine Prnp for PS19). The structures of tau filaments from Tg2541 and PS19 mice differ from each other and those of wild-type tau filaments from human brains. The structures of tau filaments from the brains of humans with mutations P301L, P301S or P301T in MAPT are not known. Filaments from the brains of Tg2541 and PS19 mice share a substructure at the junction of repeats 2 and 3, which comprises residues I297-V312 of tau and includes the P301S mutation. The filament core from the brainstem of Tg2541 mice consists of residues K274-H329 of tau and two disconnected protein densities. Two non-proteinaceous densities are also in evidence. The filament core from the cerebral cortex of line PS19 extends from residues G271-P364 of tau. One strong non-proteinaceous density is also present. Unlike the tau filaments from human brains, the sequences following repeat 4 are missing from the cores of tau filaments from the brains of Tg2541 and PS19 mice.
Collapse
Affiliation(s)
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Isabelle Lavenir
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
6
|
Benskey MJ, Panoushek S, Saito T, Saido TC, Grabinski T, Kanaan NM. Behavioral and neuropathological characterization over the adult lifespan of the human tau knock-in mouse. Front Aging Neurosci 2023; 15:1265151. [PMID: 37842124 PMCID: PMC10576558 DOI: 10.3389/fnagi.2023.1265151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Tau is a microtubule-associated protein with a diverse functional repertoire linked to neurodegenerative disease. Recently, a human tau knock-in (MAPT KI) mouse was developed that may overcome many limitations associated with current animal models used to study tau. In MAPT KI mice, the entire murine Mapt gene was replaced with the human MAPT gene under control of the endogenous Mapt promoter. This model represents an ideal in vivo platform to study the function and dysfunction of human tau protein. Accordingly, a detailed understanding of the effects MAPT KI has on structure and function of the CNS is warranted. Here, we provide a detailed behavioral and neuropathological assessment of MAPT KI mice. We compared MAPT KI to wild-type (WT) C57BL/6j mice in behavioral assessments of anxiety, attention, working memory, spatial memory, and motor performance from 6 to 24 months (m) of age. Using immunohistological and biochemical assays, we quantified markers of glia (microglia, astrocytes and oligodendrocytes), synaptic integrity, neuronal integrity and the cytoskeleton. Finally, we quantified levels of total tau, tau isoforms, tau phosphorylation, and tau conformations. MAPT KI mice show normal cognitive and locomotor behavior at all ages, and resilience to mild age-associated locomotor deficits observed in WT mice. Markers of neuronal and synaptic integrity are unchanged in MAPT KI mice with advancing age. Glial markers are largely unchanged in MAPT KI mice, but glial fibrillary acidic protein is increased in the hippocampus of WT and MAPT KI mice at 24 m. MAPT KI mice express all 6 human tau isoforms and levels of tau remain stable throughout adulthood. Hippocampal tau in MAPT KI and WT mice is phosphorylated at serine 396/404 (PHF1) and murine tau in WT animals displays more PHF1 phosphorylation at 6 and 12 m. Lastly, we extended previous reports showing that MAPT KI mice do not display overt pathology. No evidence of other tau phosphorylation residues (AT8, pS422) or abnormal conformations (TNT2 or TOC1) associated with pathogenic tau were detected. The lack of overt pathological changes in MAPT KI mice make this an ideal platform for future investigations into the function and dysfunction of tau protein in vivo.
Collapse
Affiliation(s)
- Matthew J. Benskey
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Spencer Panoushek
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Maniv I, Sarji M, Bdarneh A, Feldman A, Ankawa R, Koren E, Magid-Gold I, Reis N, Soteriou D, Salomon-Zimri S, Lavy T, Kesselman E, Koifman N, Kurz T, Kleifeld O, Michaelson D, van Leeuwen FW, Verheijen BM, Fuchs Y, Glickman MH. Altered ubiquitin signaling induces Alzheimer's disease-like hallmarks in a three-dimensional human neural cell culture model. Nat Commun 2023; 14:5922. [PMID: 37739965 PMCID: PMC10516951 DOI: 10.1038/s41467-023-41545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-β (Aβ) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aβ peptides, and Aβ build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics.
Collapse
Affiliation(s)
- Inbal Maniv
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mahasen Sarji
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anwar Bdarneh
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alona Feldman
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elle Koren
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Inbar Magid-Gold
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Noa Reis
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Despina Soteriou
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shiran Salomon-Zimri
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tali Lavy
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ellina Kesselman
- The Wolfson Department of Chemical Engineering, The Technion Center for Electron Microscopy of Soft Matter, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Naama Koifman
- The Wolfson Department of Chemical Engineering, The Technion Center for Electron Microscopy of Soft Matter, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Thimo Kurz
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Oded Kleifeld
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Daniel Michaelson
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Fred W van Leeuwen
- Department of Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Bert M Verheijen
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Yaron Fuchs
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.
- Augmanity, Rehovot, 7670308, Israel.
| | - Michael H Glickman
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
8
|
Jiang L, Roberts R, Wong M, Zhang L, Webber CJ, Kilci A, Jenkins M, Sun G, Rashad S, Sun J, Dedon PC, Daley SA, Xia W, Ortiz AR, Dorrian L, Saito T, Saido TC, Wolozin B. Accumulation of m 6A exhibits stronger correlation with MAPT than β-amyloid pathology in an APP NL-G-F /MAPT P301S mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534515. [PMID: 37034774 PMCID: PMC10081259 DOI: 10.1101/2023.03.28.534515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular β-amyloid (Aβ) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aβ plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aβ pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aβ accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Rebecca Roberts
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Melissa Wong
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Lushuang Zhang
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Chelsea Joy Webber
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Alper Kilci
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Matthew Jenkins
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sherif Rashad
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Sarah Anne Daley
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, 01730, USA
| | - Weiming Xia
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, 01730, USA
| | - Alejandro Rondón Ortiz
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Luke Dorrian
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Benjamin Wolozin
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, 02118
- Department of Neurology, Chobanian and Avedesian School of Medicine, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA USA
| |
Collapse
|