1
|
Kamiya H. Ectopic burst induced by blockade of axonal potassium channels on the mouse hippocampal mossy fiber. Front Cell Neurosci 2024; 18:1434165. [PMID: 39026687 PMCID: PMC11256220 DOI: 10.3389/fncel.2024.1434165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
A potassium channel blocker 4-AP has been shown to exert pronounced convulsive action to generate burst firings when applied to hippocampal slices. However, it remains unclear how the blockade of potassium channels leads to the generation of burst firings. One possibility is ectopic spiking from the sites different from those for physiological spike initiation at the axon initial segment, as suggested for several experimental models of epileptogenesis in vitro. To test for possible ectopic spiking at the distal axon by 4-AP application, direct recordings from large mossy fiber terminals were made with the loose-patch clamp technique in mouse hippocampal slices. To localize the action of 4-AP on the distal axon, focal perfusion, as well as micro-cut to disconnect soma and distal axons, were adopted. Focal application of 4-AP on the distal portion of mossy fibers reliably induced burst discharges of the mossy fiber terminals. Photochemical blockade of potassium channels at distal axons, by the application of RuBi-4-AP, a visible wavelength blue light-sensitive caged compound, and the illumination of blue light caused robust bursting activity originating from distal axons. Computer simulation suggested that local blockade of axonal potassium channels prolongs the duration of action potentials and thereby causes reverberating spiking activities at distal axons and subsequent antidromic propagation toward the soma. Taken together, it was suggested that local blockade of voltage-dependent potassium channels in distal axons by application of 4-AP is sufficient to cause a hyperexcitable state of hippocampal mossy fiber axons.
Collapse
Affiliation(s)
- Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Vandael D, Jonas P. Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal. Science 2024; 383:eadg6757. [PMID: 38452088 DOI: 10.1126/science.adg6757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.
Collapse
Affiliation(s)
- David Vandael
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| |
Collapse
|
3
|
Kamiya H. Modeling analysis of subthreshold voltage signaling along hippocampal mossy fiber axons. Front Cell Neurosci 2022; 16:966636. [PMID: 36072566 PMCID: PMC9441593 DOI: 10.3389/fncel.2022.966636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Axons are classically thought of as electrically well isolated from other parts of the neurons due to the shape of a long cable-like structure. In contrast to this classical view on axonal compartmentalization, recent studies revealed that subthreshold depolarization of soma and dendrite passively propagates to the axons for a substantial distance, as demonstrated in some experimentally accessible axons including hippocampal mossy fibers and cortical pyramidal cell axons. Passive propagation of subthreshold dendritic EPSPs to the axons, defined as EPreSPs (excitatory presynaptic potentials), has been demonstrated to affect transmitter release from the axon terminals. To further characterize and explore the functional significance of passive subthreshold voltage signaling along the axons, the model of EPreSPs along hippocampal mossy fibers, proposed by Alle and Geiger, was reconstructed on the NEURON simulator. To test the effect of EPreSPs on action potentials and transmitter release from the axon terminals, additional conductances were incorporated into the previous passive propagation model. These include the axonal sodium, potassium, and leak channels as well as presynaptic calcium channels composed of P/Q-, N-, and R-types, which are reconstructed from the properties of those recorded from mossy fiber boutons experimentally. In this revised model, the preceding subthreshold EPreSPs slightly reduced the action potential-evoked presynaptic calcium currents by a decrease in the amplitude of action potentials due to the slow depolarization. It should be mentioned that EPreSPs by themselves elicited small calcium currents during subthreshold depolarization through these high-voltage activated calcium channels. Since the previous experimental study by simultaneous pre and postsynaptic recordings demonstrated that EPreSPs enhanced action potential-evoked transmitter release from the mossy fiber terminals, it has been suggested that different mechanisms from the enhancement of action potential-evoked presynaptic calcium entry may involve enhanced transmitter release by EPreSP. Small calcium entry by subthreshold EPreSPs may enhance transmitter release from the mossy fiber terminals by acting as high-affinity calcium sensors for enhancing transmitter release. Another form of axonal subthreshold voltage signaling, GABA-EPreSPs elicited by a spillover of GABA from surrounding interneurons, was also explored. Functional consequences of the two modes of axonal subthreshold voltage signaling were discussed with the simulation results.
Collapse
|
4
|
Oláh VJ, Tarcsay G, Brunner J. Small Size of Recorded Neuronal Structures Confines the Accuracy in Direct Axonal Voltage Measurements. eNeuro 2021; 8:ENEURO.0059-21.2021. [PMID: 34257077 PMCID: PMC8342265 DOI: 10.1523/eneuro.0059-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Patch-clamp instruments including amplifier circuits and pipettes affect the recorded voltage signals. We hypothesized that realistic and complete in silico representation of recording instruments together with detailed morphology and biophysics of small recorded structures will reveal signal distortions and provide a tool that predicts native, instrument-free electrical signals from distorted voltage recordings. Therefore, we built a model that was verified by small axonal recordings. The model accurately recreated actual action potential (AP) measurements with typical recording artefacts and predicted the native electrical behavior. The simulations verified that recording instruments substantially filter voltage recordings. Moreover, we revealed that instrumentation directly interferes with local signal generation depending on the size of the recorded structures, which complicates the interpretation of recordings from smaller structures, such as axons. However, our model offers a straightforward approach that predicts the native waveforms of fast voltage signals and the underlying conductances even from the smallest neuronal structures.
Collapse
Affiliation(s)
- Viktor János Oláh
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Gergely Tarcsay
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| |
Collapse
|
5
|
Lee JW. Protonic conductor: better understanding neural resting and action potential. J Neurophysiol 2020; 124:1029-1044. [PMID: 32816602 DOI: 10.1152/jn.00281.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the employment of the transmembrane electrostatic proton localization theory with a new membrane potential equation, neural resting and action potential is now much better understood as the voltage contributed by the localized protons/cations at a neural liquid- membrane interface. Accordingly, the neural resting/action potential is essentially a protonic/cationic membrane capacitor behavior. It is now understood with a newly formulated action potential equation: when action potential is <0 (negative number), the localized protons/cations charge density at the liquid-membrane interface along the periplasmic side is >0 (positive number); when the action potential is >0, the concentration of the localized protons and localized nonproton cations is <0, indicating a "depolarization" state. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. With the use of the action potential equation, the biological significance of axon myelination is now also elucidated as to provide protonic insulation and prevent any ions both inside and outside of the neuron from interfering with the action potential signal, so that the action potential can quickly propagate along the axon with minimal (e.g., 40 times less) energy requirement.NEW & NOTEWORTHY The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The biological significance of axon myelination is now elucidated as to provide protonic insulation and prevent any ions from interfering with action potential signal.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
6
|
Kamiya H. Excitability Tuning of Axons by Afterdepolarization. Front Cell Neurosci 2019; 13:407. [PMID: 31555100 PMCID: PMC6742905 DOI: 10.3389/fncel.2019.00407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The axon provides a sole output of the neuron which propagates action potentials reliably to the axon terminal and transmits neuronal information to the postsynaptic neuron across the synapse. A classical view of neuronal signaling is based on these two processes, namely binary (all or none) signaling along the axon and graded (tunable) signaling at the synapse. Recent studies, however, have revealed that the excitability of the axon is subject to dynamic tuning for a short period after axonal action potentials. This was first described as post-spike hyperexcitability, as measured by the changes in stimulus threshold for a short period after an action potential. Later on, direct recordings from central nervous system (CNS) axons or axon terminals using subcellular patch-clamp recording showed that axonal spikes are often followed by afterdepolarization (ADP) lasting for several tens of milliseconds and has been suggested to mediate post-spike hyperexcitability. In this review article, I focused on the mechanisms as well as the functional significance of ADP in fine-scale modulation of axonal spike signaling in the CNS, with special reference to hippocampal mossy fibers, one of the best-studied CNS axons. As a common basic mechanism underlying axonal ADP, passive propagation by the capacitive discharge of the axonal membrane as well as voltage-dependent K+ conductance underlies the generation of ADP. Small but prolonged axonal ADP lasting for several tens of milliseconds may influence the subsequent action potential and transmitter release from the axon terminals. Both duration and amplitude of axonal spike are subject to such modulation by preceding action potential-ADP sequence, deviating from the conventional assumption of digital nature of axonal spike signaling. Impact on the transmitter release is also discussed in the context of axonal spike plasticity. Axonal spike is subject to dynamic control on a fine-scale and thereby contributes to the short-term plasticity at the synapse.
Collapse
Affiliation(s)
- Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Raastad M. The Slow Depolarization Following Individual Spikes in Thin, Unmyelinated Axons in Mammalian Cortex. Front Cell Neurosci 2019; 13:203. [PMID: 31156391 PMCID: PMC6532452 DOI: 10.3389/fncel.2019.00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
An important goal in neuroscience is to understand how neuronal excitability is controlled. Therefore, Gardner-Medwin's 1972 discovery, that cerebellar parallel fibers were more excitable up to 100 ms after individual action potentials, could have had great impact. If this long-lasting effect were due to intrinsic membrane mechanisms causing a depolarizing after-potential (DAP) this was an important finding. However, that hypothesis met resistance because the use of K+ sensitive electrodes showed that synchronous activation, as commonly used in excitability tests, increased extracellular K+ concentration sufficiently to explain much of the hyperexcitability. It is still controversial because intra-axonal recordings, which could have settled the debate, have not been made from parallel fibers or other axons of similar calibers. If it had not been for the fact that such thin axons are, by far, the most common axon type in cortical areas and control almost all glutamate release, it would be tempting to ignore them until an appropriate intra-axonal recording technique is invented. I will go through the literature that, taken together, supports the hypothesis that a DAP is an intrinsic membrane mechanism in cerebellar parallel fibers and hippocampal Schaffer collaterals. It is most likely due to a well-controlled process that stops the fast repolarization at a membrane potential positive to resting membrane potential, leaving the membrane more excitable for ~100 ms during a slow, passive discharge of the membrane capacitance. The DAP helps reduce failures but can also cause uncontrolled bursting if it is not properly controlled. The voltage at which the fast repolarization stops, and the DAP starts, is close the activation range of both Na+ and Ca2+ voltage activated channels and is therefore essential for neuronal function.
Collapse
Affiliation(s)
- Morten Raastad
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Kamiya H. Modeling Analysis of Axonal After Potential at Hippocampal Mossy Fibers. Front Cell Neurosci 2019; 13:210. [PMID: 31139051 PMCID: PMC6527874 DOI: 10.3389/fncel.2019.00210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Action potentials reliably propagate along the axons, and after potential often follows the axonal action potentials. After potential lasts for several tens of millisecond and plays a crucial role in regulating excitability during repetitive firings of the axon. Several mechanisms underlying the generation of after potential have been suggested, including activation of ionotropic autoreceptors, accumulation of K+ ions in the surrounding extracellular space, the opening of slow voltage-dependent currents, and capacitive discharge of upstream action potentials passively propagated through axon cable. Among them, capacitive discharge is difficult to examine experimentally, since the quantitative evaluation of a capacitive component requires simultaneous recordings from at least two different sites on the connecting axon. In this study, a series of numerical simulation of the axonal action potential was performed using a proposed model of the hippocampal mossy fiber where morphological as well as electrophysiological data are accumulated. To evaluate the relative contribution of the capacitive discharge in axonal after potential, voltage-dependent Na+ current as well as voltage-dependent K+ current was omitted from a distal part of mossy fiber axons. Slow depolarization with a similar time course with the recorded after potential in the previous study was left after blockade of Na+ and K+ currents, suggesting that a capacitive component contributes substantially in axonal after potential following propagating action potentials. On the other hand, it has been shown that experimentally recorded after potential often showed clear voltage-dependency upon changes in the initial membrane potential, obviously deviating from voltage-independent nature of the capacitive component. The simulation revealed that activation of voltage-dependent K+ current also contributes to shape a characteristic waveform of axonal after potential and reconstitute similar voltage-dependency with that reported for the after potential recorded from mossy fiber terminals. These findings suggest that the capacitive component reflecting passive propagation of upstream action potential substantially contributes to the slow time course of axonal after potential, although voltage-dependent K+ current provided a characteristic voltage dependency of after potential waveform.
Collapse
Affiliation(s)
- Haruyuki Kamiya
- Department of Neurobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|