1
|
Perez CI, Luis-Islas J, Lopez A, Diaz X, Molina O, Arroyo B, Moreno MG, Lievana EG, Fonseca E, Castañeda-Hernández G, Gutierrez R. Tesofensine, a novel antiobesity drug, silences GABAergic hypothalamic neurons. PLoS One 2024; 19:e0300544. [PMID: 38656972 PMCID: PMC11042726 DOI: 10.1371/journal.pone.0300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Obesity is a major global health epidemic that has adverse effects on both the people affected as well as the cost to society. Several anti-obesity drugs that target GLP-1 receptors have recently come to the market. Here, we describe the effects of tesofensine, a novel anti-obesity drug that acts as a triple monoamine neurotransmitter reuptake inhibitor. Using various techniques, we investigated its effects on weight loss and underlying neuronal mechanisms in mice and rats. These include behavioral tasks, DeepLabCut videotaped analysis, electrophysiological ensemble recordings, optogenetic activation, and chemogenetic silencing of GABAergic neurons in the Lateral Hypothalamus (LH). We found that tesofensine induces a greater weight loss in obese rats than lean rats, while differentially modulating the neuronal ensembles and population activity in LH. In Vgat-ChR2 and Vgat-IRES-cre transgenic mice, we found for the first time that tesofensine inhibited a subset of LH GABAergic neurons, reducing their ability to promote feeding behavior, and chemogenetically silencing them enhanced tesofensine's food-suppressing effects. Unlike phentermine, a dopaminergic appetite suppressant, tesofensine causes few, if any, head-weaving stereotypy at therapeutic doses. Most importantly, we found that tesofensine prolonged the weight loss induced by 5-HTP, a serotonin precursor, and blocked the body weight rebound that often occurs after weight loss. Behavioral studies on rats with the tastant sucrose indicated that tesofensine's appetite suppressant effects are independent of taste aversion and do not directly affect the perception of sweetness or palatability of sucrose. In summary, our data provide new insights into the effects of tesofensine on weight loss and the underlying neuronal mechanisms, suggesting that tesofensine may be an effective treatment for obesity and that it may be a valuable adjunct to other appetite suppressants to prevent body weight rebound.
Collapse
Affiliation(s)
- Claudia I. Perez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | - Jorge Luis-Islas
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Axel Lopez
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Xarenny Diaz
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Omar Molina
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Benjamin Arroyo
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Mario G. Moreno
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Elvi Gil Lievana
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
| | - Esmeralda Fonseca
- Princeton Neuroscience Institute, Princeton, NJ, United States of America
| | | | - Ranier Gutierrez
- Department of Pharmacology, Laboratory of Neurobiology of Appetite, CINVESTAV, México, México
- Centro de Investigación sobre el Envejecimiento (CIE), Cinvestav sede sur, México, México
| |
Collapse
|
2
|
Myers TR, Saul B, Karlsen M, Beauchesne A, Glavas Z, Ncube M, Bradley R, Goldhamer AC. Potential Effects of Prolonged Water-Only Fasting Followed by a Whole-Plant-Food Diet on Salty and Sweet Taste Sensitivity and Perceived Intensity, Food Liking, and Dietary Intake. Cureus 2022; 14:e24689. [PMID: 35663685 PMCID: PMC9161620 DOI: 10.7759/cureus.24689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
The overconsumption of calorie-dense foods high in added salt, sugar, and fat is a major contributor to current rates of obesity, and methods to reduce consumption are needed. Prolonged water-only fasting followed by an exclusively whole-plant-food diet free of added salt, oil, and sugar may reduce the consumption of these hyper-palatable foods, but such effects have not been quantified. Therefore, we conducted a preliminary study to estimate the effects of this intervention on salty and sweet taste detection and recognition thresholds and perceived taste intensity after at least five days of fasting and at refeed day three. We also assessed the effects on sweet, salty, and fatty food preference and overall dietary consumption 30 days after the day three refeed visit. Based on this data, we estimated that 10 days after the start of the fasting, salty taste recognition, sweet taste detection, and sweet taste recognition thresholds decreased significantly, salty taste intensity ratings increased significantly, and sweet taste intensity ratings decreased significantly. We also have preliminary data that prolonged water-only fasting followed by refeeding on an exclusively whole-food-plant diet may reduce salty/fatty and sweet/fatty food liking, reduce sugar intake, and increase vegetable intake. These results support further research into the effects of fasting and diet on taste function and food likability and consumption.
Collapse
|