1
|
Cerro PD, Barriga-Martín A, Vara H, Romero-Muñoz LM, Rodríguez-De-Lope Á, Collazos-Castro JE. Neuropathological and Motor Impairments after Incomplete Cervical Spinal Cord Injury in Pigs. J Neurotrauma 2021; 38:2956-2977. [PMID: 34121450 DOI: 10.1089/neu.2020.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Andrés Barriga-Martín
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Hugo Vara
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Luis M Romero-Muñoz
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
2
|
Ocklenburg S, Metzen D, Schlüter C, Fraenz C, Arning L, Streit F, Güntürkün O, Kumsta R, Genç E. Polygenic scores for handedness and their association with asymmetries in brain structure. Brain Struct Funct 2021; 227:515-527. [PMID: 34235564 PMCID: PMC8844179 DOI: 10.1007/s00429-021-02335-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Dorothea Metzen
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Caroline Schlüter
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christoph Fraenz
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Fabian Streit
- Medical Faculty Mannheim, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Erhan Genç
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| |
Collapse
|