1
|
Poyo Solanas M, Zhan M, de Gelder B. Ultrahigh Field fMRI Reveals Different Roles of the Temporal and Frontoparietal Cortices in Subjective Awareness. J Neurosci 2024; 44:e0425232023. [PMID: 38531633 PMCID: PMC11097282 DOI: 10.1523/jneurosci.0425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024] Open
Abstract
A central question in consciousness theories is whether one is dealing with a dichotomous ("all-or-none") or a gradual phenomenon. In this 7T fMRI study, we investigated whether dichotomy or gradualness in fact depends on the brain region associated with perceptual awareness reports. Both male and female human subjects performed an emotion discrimination task (fear vs neutral bodies) presented under continuous flash suppression with trial-based perceptual awareness measures. Behaviorally, recognition sensitivity increased linearly with increased stimuli awareness and was at chance level during perceptual unawareness. Physiologically, threat stimuli triggered a slower heart rate than neutral ones during "almost clear" stimulus experience, indicating freezing behavior. Brain results showed that activity in the occipitotemporal, parietal, and frontal regions as well as in the amygdala increased with increased stimulus awareness while early visual areas showed the opposite pattern. The relationship between temporal area activity and perceptual awareness best fitted a gradual model while the activity in frontoparietal areas fitted a dichotomous model. Furthermore, our findings illustrate that specific experimental decisions, such as stimulus type or the approach used to evaluate awareness, play pivotal roles in consciousness studies and warrant careful consideration.
Collapse
Affiliation(s)
- Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| |
Collapse
|
2
|
Li W, Xie M, Chen H, Zhang X, Zhang H, Xu Z, Song S, Wang Z, Jiang W, Jiang Y, Liu N, Zhang N. Resting-state functional connectivity of amygdala subregions predicts treatment outcome for cognitive behavioral therapy in obsessive-compulsive disorder at a 4-month follow-up. Psychiatry Res 2024; 335:115876. [PMID: 38564923 DOI: 10.1016/j.psychres.2024.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) is considered as the first-line treatment for obsessive-compulsive disorder (OCD). However, the underlying neural mechanisms through which CBT exerts its effects in OCD remain unclear. This study aims to investigate whether the improvement of clinical symptoms in OCD patients after CBT treatment is associated with changes in resting-state functional connectivity (FC) of the amygdala subregion, and whether these changes can be served as potential predictors of four-months treatment efficacy. METHODS We collected resting-state functional magnetic resonance imaging (rs-fMRI) data from 57 OCD patients and 50 healthy subjects at baseline. In the patient group, rs-fMRI was also obtained after completion of an 8-week CBT treatment and 4 months post-treatment. A whole-brain rsFC analysis was conducted using the amygdala subregion as the seed point. We analyzed the FC patterns in relation to 4 months clinical outcomes to elucidate the long-term efficacy of CBT in OCD patients. RESULTS Treatment responseat at pre-treatment was found to be associated with reduced rsFC between the left basolateral amygdala(BLA)and left superior temporal gyrus(STG) at baseline. Lower pre-treatment FC were negatively correlated with the severity of OCD symptoms as measured by the Yale-Brown Obsessive Compulsive Severity Scale (Y-BOCS). Moreover, the area under the receiver operating characteristic (ROC) curve for the FC between the left BLA and STG at the end of treatment was 73.0% and 70.4% for the effective-ineffective and remitted or unremitted groups, respectively. At the 4-month follow-up, the area under the ROC curve for the effective-ineffective and remitted or unremitted groups was 83.9% and 76.5%, respectively. CONCLUSION These findings suggest that brain functional activity in patients with OCD can predict treatment response to CBT, and longitudinal changes in relevant brain functional activity following CBT treatment are associated with treatment response in OCD.
Collapse
Affiliation(s)
- Wangyue Li
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Minyao Xie
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Haocheng Chen
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuedi Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Huan Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhihan Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Shasha Song
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhongqi Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wenjing Jiang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yicheng Jiang
- School of Psychology, Nanjing Normal University, Nanjing, PR China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
3
|
Gao J, Yang X, Chen X, Liu R, Wang P, Meng F, Li Z, Zhou Y. Resting-state functional connectivity of the amygdala subregions in unmedicated patients with obsessive-compulsive disorder before and after cognitive behavioural therapy. J Psychiatry Neurosci 2021; 46:E628-E638. [PMID: 34785511 PMCID: PMC8598242 DOI: 10.1503/jpn.210084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cognitive behavioural therapy (CBT) is considered an effective first-line treatment for obsessive-compulsive disorder (OCD). However, the neural basis of CBT for OCD has not yet been elucidated. The role of the amygdala in OCD and its functional coupling with the cerebral cortex have received increasing attention, and may provide new understanding of the neural basis of CBT for OCD. METHODS We acquired baseline resting-state functional MRI (fMRI) scans from 45 unmedicated patients with OCD and 40 healthy controls; we then acquired another wave of resting-state fMRI scans from the patients with OCD after 12 weeks of CBT. We performed seed-based resting-state functional connectivity analyses of the amygdala subregions to examine changes in patients with OCD as a result of CBT. RESULTS Compared to healthy controls, patients with OCD showed significantly increased resting-state functional connectivity at baseline between the left basolateral amygdala and the right middle frontal gyrus, and between the superficial amygdala and the right cuneus. In patients with OCD who responded to CBT, we found decreased resting-state functional connectivity after CBT between the amygdala subregions and the visual association cortices and increased resting-state functional connectivity between the amygdala subregions and the right inferior parietal lobe. Furthermore, these changes in resting-state functional connectivity were positively associated with changes in scores on the compulsion or obsession subscales of the Yale-Brown Obsessive-Compulsive Scale. LIMITATIONS Because of the lack of a second scan for healthy controls after 12 weeks, our results may have been confounded by other variables. CONCLUSION Our findings yield insights into the pathophysiology of OCD; they also reveal the potential neural changes elicited by CBT, and thus have implications for guiding effective treatment strategies with CBT for OCD.
Collapse
|
4
|
Marrazzo G, Vaessen MJ, de Gelder B. Decoding the difference between explicit and implicit body expression representation in high level visual, prefrontal and inferior parietal cortex. Neuroimage 2021; 243:118545. [PMID: 34478822 DOI: 10.1016/j.neuroimage.2021.118545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies provide an increasing understanding of how visual objects categories like faces or bodies are represented in the brain and also raised the question whether a category based or more dynamic network inspired models are more powerful. Two important and so far sidestepped issues in this debate are, first, how major category attributes like the emotional expression directly influence category representation and second, whether category and attribute representation are sensitive to task demands. This study investigated the impact of a crucial category attribute like emotional expression on category area activity and whether this varies with the participants' task. Using (fMRI) we measured BOLD responses while participants viewed whole body expressions and performed either an explicit (emotion) or an implicit (shape) recognition task. Our results based on multivariate methods show that the type of task is the strongest determinant of brain activity and can be decoded in EBA, VLPFC and IPL. Brain activity was higher for the explicit task condition in VLPFC and was not emotion specific. This pattern suggests that during explicit recognition of the body expression, body category representation may be strengthened, and emotion and action related activity suppressed. Taken together these results stress the importance of the task and of the role of category attributes for understanding the functional organization of high level visual cortex.
Collapse
Affiliation(s)
- Giuseppe Marrazzo
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, the Netherlands
| | - Maarten J Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, the Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, the Netherlands; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Razavi Y, Karimi S, Karimi-Haghighi S, Hesam S, Haghparast A. Changes in c-fos and p-CREB signaling following exposure to forced swim stress or exogenous corticosterone during morphine-induced place preference are dependent on glucocorticoid receptor in the basolateral amygdala. Can J Physiol Pharmacol 2020; 98:741-752. [PMID: 32574519 DOI: 10.1139/cjpp-2019-0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neural circuitry comprising the nucleus accumbens (NAc), prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HIP) are the main components of the reward circuit. Our previous behavioral data showed that forced swim stress (FSS) and corticosterone administration could inhibit the acquisition of morphine-induced conditioned place preference (CPP), and this effect was blocked by intra-basolateral amygdala (BLA) administration of RU38486, glucocorticoid receptor (GR) antagonist. Therefore, we tried to evaluate the effect of intra-BLA administration of the GR antagonist during the conditioning phase on the c-fos and p-CREB/CREB ratio expression in the AMY, NAc, PFC, and HIP of rats that underwent FSS or received exogenous corticosterone (10 mg/kg; i.p.) before morphine injection (5 mg/kg; s.c.) during 3 conditioning days. Our results showed that morphine-induced CPP could increase c-fos level and p-CREB/CREB ratio in all regions (except in the HIP). In addition, c-fos expression was elevated by FSS in all regions and blockade of GR decreased this effect. In the PFC, in addition to FSS, corticosterone could raise c-fos expression, which was blocked by RU38486. In conclusion, it seems that the intra-BLA administration of RU38486 differently modulates the effect of morphine-induced CPP on the expression of c-fos and p-CREB/CREB ratio in animals that underwent FSS or corticosterone administration.
Collapse
Affiliation(s)
- Yasaman Razavi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soghra Hesam
- Department of Neuroscience, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Suslow T, Hußlack A, Bujanow A, Henkelmann J, Kersting A, Hoffmann KT, Egloff B, Lobsien D, Günther V. Implicitly and explicitly assessed anxiety: No relationships with recognition of and brain response to facial emotions. Neuroscience 2019; 408:1-13. [PMID: 30953669 DOI: 10.1016/j.neuroscience.2019.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 11/28/2022]
Abstract
Trait anxiety, the disposition to experience anxiety, is known to facilitate perception of threats. Trait anxious individuals seem to identify threatening stimuli such as fearful facial expressions more accurately, especially when presented under temporal constraints. In past studies on anxiety and emotion face recognition, only self-report or explicit measures of anxiety have been administered. Implicit measures represent indirect tests allowing to circumvent problems associated with self-report. In our study, we made use of implicit in addition to explicit measures to investigate the relationships of trait anxiety with recognition of and brain response to emotional faces. 75 healthy young volunteers had to identify briefly presented (67 ms) fearful, angry, happy, and neutral facial expressions masked by neutral faces while undergoing functional magnetic resonance imaging. The Implicit Association Test, the State-Trait Anxiety Inventory and the Beck Anxiety Inventory were applied as implicit and explicit measures of trait anxiety. After corrections for multiple testing, neither implicitly nor explicitly measured anxiety correlated with recognition of emotional facial expressions. Moreover, implicitly and explicitly assessed anxiety was not linked to brain response to emotional faces. Our data suggest links between discrimination accuracy and brain response to facial emotions. Activation of the caudate nucleus seems be of particular importance for recognizing fear and happiness from facial expressions. Processes of somatosensory resonance appear to be involved in identifying fear from facial expressions. The present data indicate that, regardless of assessment method, trait anxiety does not affect the recognition of fear or other emotions as has been proposed previously.
Collapse
Affiliation(s)
- Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstr, 10, Leipzig 04103, Germany.
| | - Anja Hußlack
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstr, 10, Leipzig 04103, Germany
| | - Anna Bujanow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstr, 10, Leipzig 04103, Germany
| | - Jeanette Henkelmann
- Department of Neuroradiology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Anette Kersting
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstr, 10, Leipzig 04103, Germany
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Boris Egloff
- Department of Psychology, Johannes Gutenberg University of Mainz, Binger Str. 14-16, Mainz 55122, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Vivien Günther
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Semmelweisstr, 10, Leipzig 04103, Germany
| |
Collapse
|
7
|
Rousseau PF, El Khoury-Malhame M, Reynaud E, Boukezzi S, Cancel A, Zendjidjian X, Guyon V, Samuelian JC, Guedj E, Chaminade T, Khalfa S. Fear extinction learning improvement in PTSD after EMDR therapy: an fMRI study. Eur J Psychotraumatol 2019; 10:1568132. [PMID: 33235664 PMCID: PMC7671715 DOI: 10.1080/20008198.2019.1568132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: Neurobiological models of Posttraumatic Stress Disorder (PTSD) implicate fear processing impairments in the maintenance of the disorder. Eye Movement Desensitization and Reprocessing (EMDR) is one of the most efficient psychotherapies to treat PTSD. We aimed at exploring the brain mechanisms of the fear circuitry involved in PTSD patients' symptom remission after EMDR therapy. Method: Thirty-six PTSD participants were randomly assigned to either EMDR group receiving EMDR therapy or Wait-List (WL) group receiving supportive therapy. Participants underwent a behavioural fear conditioning and extinction paradigm during functional magnetic resonance (fMRI). In the EMDR group, patients were scanned at baseline, before EMDR and one week after remission. In the WL group, patients were scanned at baseline and within the same time interval as the EMDR group. Results: In the EMDR group after treatment, fear responses in the late extinction were significantly lower than before therapy. In parallel, significant functional activity and connectivity changes were found in the EMDR group versus the WL during the late extinction. These changes involve the fear circuit (amygdalae, left hippocampus), the right inferior frontal gyrus, the right frontal eye field and insula (pFWE < .05). Conclusion: These functional modifications underlie a significant improvement of fear extinction learning in PTSD patients after EMDR therapy.
Collapse
Affiliation(s)
| | - Myriam El Khoury-Malhame
- School of Arts and Sciences, Neurosciences, Neuropsychology, Lebanese American University, Beirut, Lebanon
| | | | - Sarah Boukezzi
- Timone Institute of Neuroscience, UMR 7289 CNRS, Marseille, France
| | - Aïda Cancel
- Timone Institute of Neuroscience, UMR 7289 CNRS, Marseille, France
| | - Xavier Zendjidjian
- Department of Psychiatry, La Conception University Hospital, Marseille, France
| | - Valérie Guyon
- Department of Psychiatry, La Conception University Hospital, Marseille, France
| | | | - Eric Guedj
- Biophysics and Nuclear Medicine Department, Timone Hospital, Marseille, France
| | | | - Stephanie Khalfa
- Laboratoire de Neurosciences Sensorielles et Cognitives, UMR 7260 CNRS, Marseille, France
| |
Collapse
|
8
|
The role of the basolateral amygdala in dreaming. Cortex 2018; 113:169-183. [PMID: 30660955 DOI: 10.1016/j.cortex.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/09/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023]
Abstract
Neuroimaging studies have repeatedly shown amygdala activity during sleep (REM and NREM). Consequently, various theorists propose central roles for the amygdala in dreaming - particularly in the generation of dream affects, which seem to play a major role in dream plots. However, a causal role for the amygdala in dream phenomena has never been demonstrated. The traditional first step in determining this role is to observe the functional effects of isolated lesions to the brain structure in question. However, circumscribed bilateral amygdala lesions are extremely rare. Furthermore, the treatment of the amygdala as a unitary structure is problematic, as the basolateral and centromedial amygdala (BLA and CMA) may serve very different functions. We analysed 23 dream reports collected from eight adult patients with bilateral calcification of the BLA as a result of a very rare genetic condition called Urbach-Wiethe Disease (UWD). We compared these dream reports to 52 reports collected from 17 matched controls. Given that the BLA has been implicated in various affective processes in waking life, we predicted that the emotional content of the patients' dreams would differ from that of controls. Due to the exploratory nature of this research, a range of different dream characteristics were analysed. A principal components analysis run on all data returned three key factors, namely pleasantness, length and danger. The UWD patients' dream reports were significantly more pleasant and significantly shorter and less complex than control reports. No differences were found in levels of threat or danger. The results support some current hypotheses concerning the amygdala's role in dreaming, and call others into question. Future research should examine whether these UWD patients show generally impaired emotional episodic memory due to BLA damage, which could explain some of the current findings.
Collapse
|
9
|
Poyo Solanas M, Zhan M, Vaessen M, Hortensius R, Engelen T, de Gelder B. Looking at the face and seeing the whole body. Neural basis of combined face and body expressions. Soc Cogn Affect Neurosci 2018; 13:135-144. [PMID: 29092076 PMCID: PMC5793719 DOI: 10.1093/scan/nsx130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/23/2017] [Indexed: 11/14/2022] Open
Abstract
In the natural world, faces are not isolated objects but are rather encountered in the context of the whole body. Previous work has studied the perception of combined faces and bodies using behavioural and electrophysiological measurements, but the neural correlates of emotional face–body perception still remain unexplored. Here, we combined happy and fearful faces and bodies to investigate the influence of body expressions on the neural processing of the face, the effect of emotional ambiguity between the two and the role of the amygdala in this process. Our functional magnetic resonance imaging analyses showed that the activity in motor, prefrontal and visual areas increases when facial expressions are presented together with bodies rather than in isolation, consistent with the notion that seeing body expressions triggers both emotional and action-related processes. In contrast, psychophysiological interaction analyses revealed that amygdala modulatory activity increases after the presentation of isolated faces when compared to combined faces and bodies. Furthermore, a facial expression combined with a congruent body enhanced both cortical activity and amygdala functional connectivity when compared to an incongruent face–body compound. Finally, the results showed that emotional body postures influence the processing of facial expressions, especially when the emotion conveyed by the body implies danger.
Collapse
Affiliation(s)
- Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Maarten Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Ruud Hortensius
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Tahnée Engelen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Terburg D, Scheggia D, Triana Del Rio R, Klumpers F, Ciobanu AC, Morgan B, Montoya ER, Bos PA, Giobellina G, van den Burg EH, de Gelder B, Stein DJ, Stoop R, van Honk J. The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study. Cell 2018; 175:723-735.e16. [PMID: 30340041 PMCID: PMC6198024 DOI: 10.1016/j.cell.2018.09.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 11/02/2022]
Abstract
Rodent research delineates how the basolateral amygdala (BLA) and central amygdala (CeA) control defensive behaviors, but translation of these findings to humans is needed. Here, we compare humans with natural-selective bilateral BLA lesions to rats with a chemogenetically silenced BLA. We find, across species, an essential role for the BLA in the selection of active escape over passive freezing during exposure to imminent yet escapable threat (Timm). In response to Timm, BLA-damaged humans showed increased startle potentiation and BLA-silenced rats demonstrated increased startle potentiation, freezing, and reduced escape behavior as compared to controls. Neuroimaging in humans suggested that the BLA reduces passive defensive responses by inhibiting the brainstem via the CeA. Indeed, Timm conditioning potentiated BLA projections onto an inhibitory CeA pathway, and pharmacological activation of this pathway rescued deficient Timm responses in BLA-silenced rats. Our data reveal how the BLA, via the CeA, adaptively regulates escape behavior from imminent threat and that this mechanism is evolutionary conserved across rodents and humans.
Collapse
Affiliation(s)
- David Terburg
- Department of Psychology, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | - Diego Scheggia
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Rodrigo Triana Del Rio
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Floris Klumpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Alexandru Cristian Ciobanu
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Barak Morgan
- Global Risk Governance Program, Institute for Safety Governance and Criminology, Law Faculty, University of Cape Town, Cape Town, South Africa
| | | | - Peter A Bos
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Gion Giobellina
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Erwin H van den Burg
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Beatrice de Gelder
- Department of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Ron Stoop
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland.
| | - Jack van Honk
- Department of Psychology, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Dynamic Interactions between Emotion Perception and Action Preparation for Reacting to Social Threat: A Combined cTBS-fMRI Study. eNeuro 2018; 5:eN-NWR-0408-17. [PMID: 29971249 PMCID: PMC6027957 DOI: 10.1523/eneuro.0408-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023] Open
Abstract
Expressions of emotion are powerful triggers for situation-appropriate responses by the observer. Of particular interest regarding the preparation of such adaptive actions are parietal and premotor cortices, given their potential for interaction with the amygdala (AMG), which is known to play a crucial role in the processing of affective information and in motor response. We set out to disentangle the respective roles of the inferior parietal lobule (IPL) and ventral premotor cortex (PMv) in humans in the processing of emotional body expressions by assessing remote effects of continuous theta burst stimulation (cTBS) in the action network and in AMG. Participants were presented with blocks of short videos showing either angry or neutral whole-body actions. The experiment consisted of three fMRI sessions: two sessions were preceded by stimulation of either right IPL (rIPL) or right PMv (rPMv); and a third session assessed baseline activity. Interestingly, whereas at baseline the left AMG did not differentiate between neutral and angry body postures, a significant difference between these conditions emerged after stimulation of either rIPL or rPMv, with much larger responses to angry than to neutral stimuli. In addition, the effects of cTBS stimulation and emotion were also observed in two other action-relevant areas, the supplementary motor area and the superior parietal cortex. Together, these results show how areas involved in action and emotion perception and in action preparation interact dynamically.
Collapse
|
12
|
Seinfeld S, Arroyo-Palacios J, Iruretagoyena G, Hortensius R, Zapata LE, Borland D, de Gelder B, Slater M, Sanchez-Vives MV. Offenders become the victim in virtual reality: impact of changing perspective in domestic violence. Sci Rep 2018; 8:2692. [PMID: 29426819 PMCID: PMC5807352 DOI: 10.1038/s41598-018-19987-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
The role of empathy and perspective-taking in preventing aggressive behaviors has been highlighted in several theoretical models. In this study, we used immersive virtual reality to induce a full body ownership illusion that allows offenders to be in the body of a victim of domestic abuse. A group of male domestic violence offenders and a control group without a history of violence experienced a virtual scene of abuse in first-person perspective. During the virtual encounter, the participants' real bodies were replaced with a life-sized virtual female body that moved synchronously with their own real movements. Participants' emotion recognition skills were assessed before and after the virtual experience. Our results revealed that offenders have a significantly lower ability to recognize fear in female faces compared to controls, with a bias towards classifying fearful faces as happy. After being embodied in a female victim, offenders improved their ability to recognize fearful female faces and reduced their bias towards recognizing fearful faces as happy. For the first time, we demonstrate that changing the perspective of an aggressive population through immersive virtual reality can modify socio-perceptual processes such as emotion recognition, thought to underlie this specific form of aggressive behaviors.
Collapse
Affiliation(s)
- S Seinfeld
- Institut d'investigacions Biomèdiques August Pi i Sunyer, Systems Neuroscience, Rosselló 149-153, 08036, Barcelona, Spain.,Experimental Virtual Environments for Neuroscience and Technology (EVENT) Laboratory, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Valld'Hebron 171, 08035, Barcelona, Spain
| | - J Arroyo-Palacios
- Experimental Virtual Environments for Neuroscience and Technology (EVENT) Laboratory, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Valld'Hebron 171, 08035, Barcelona, Spain.,Sony Interactive Entertainment, Research and Development, California, United States
| | - G Iruretagoyena
- Institut d'investigacions Biomèdiques August Pi i Sunyer, Systems Neuroscience, Rosselló 149-153, 08036, Barcelona, Spain.,Experimental Virtual Environments for Neuroscience and Technology (EVENT) Laboratory, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Valld'Hebron 171, 08035, Barcelona, Spain
| | - R Hortensius
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands.,Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, Wales, United Kingdom
| | - L E Zapata
- Institut d'investigacions Biomèdiques August Pi i Sunyer, Systems Neuroscience, Rosselló 149-153, 08036, Barcelona, Spain
| | - D Borland
- Institut d'investigacions Biomèdiques August Pi i Sunyer, Systems Neuroscience, Rosselló 149-153, 08036, Barcelona, Spain.,Experimental Virtual Environments for Neuroscience and Technology (EVENT) Laboratory, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Valld'Hebron 171, 08035, Barcelona, Spain.,RENCI, The University of North Carolina at Chapel Hill, North Carolina, United States
| | - B de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| | - M Slater
- Experimental Virtual Environments for Neuroscience and Technology (EVENT) Laboratory, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Valld'Hebron 171, 08035, Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - M V Sanchez-Vives
- Institut d'investigacions Biomèdiques August Pi i Sunyer, Systems Neuroscience, Rosselló 149-153, 08036, Barcelona, Spain. .,Experimental Virtual Environments for Neuroscience and Technology (EVENT) Laboratory, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Valld'Hebron 171, 08035, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
13
|
Bourgin J, Guyader N, Chauvin A, Juphard A, Sauvée M, Moreaud O, Silvert L, Hot P. Early Emotional Attention is Impacted in Alzheimer's Disease: An Eye-Tracking Study. J Alzheimers Dis 2018; 63:1445-1458. [PMID: 29782325 DOI: 10.3233/jad-180170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Emotional deficits have been repetitively reported in Alzheimer's disease (AD) without clearly identifying how emotional processing is impaired in this pathology. This paper describes an investigation of early emotional processing, as measured by the effects of emotional visual stimuli on a saccadic task involving both pro (PS) and anti (AS) saccades. Sixteen patients with AD and 25 age-matched healthy controls were eye-tracked while they had to quickly move their gaze toward a positive, negative, or neutral image presented on a computer screen (in the PS condition) or away from the image (in the AS condition). The age-matched controls made more AS mistakes for negative stimuli than for other stimuli, and triggered PSs toward negative stimuli more quickly than toward other stimuli. In contrast, patients with AD showed no difference with regard to the emotional category in any of the tasks. The present study is the first to highlight a lack of early emotional attention in patients with AD. These results should be taken into account in the care provided to patients with AD, since this early impairment might seriously degrade their overall emotional functioning.
Collapse
Affiliation(s)
- Jessica Bourgin
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS UMR 5105, Laboratoire de Psychologie et Neurocognition (LPNC), Grenoble, France
| | - Nathalie Guyader
- Université Grenoble Alpes, CNRS UMR 5216, Laboratoire Grenoble Images Parole Signal Automatique (GIPSA-lab), Grenoble, France
| | - Alan Chauvin
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS UMR 5105, Laboratoire de Psychologie et Neurocognition (LPNC), Grenoble, France
| | | | - Mathilde Sauvée
- Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
- Centre Mémoire de Ressources et de Recherche, Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
| | - Olivier Moreaud
- Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
- Centre Mémoire de Ressources et de Recherche, Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
| | - Laetitia Silvert
- Université Clermont Auvergne, UCA-CNRS UMR 6024, Laboratoire de Psychologie Sociale et Cognitive (LAPSCO), Clermont-Ferrand, France
| | - Pascal Hot
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS UMR 5105, Laboratoire de Psychologie et Neurocognition (LPNC), Grenoble, France
| |
Collapse
|
14
|
Coppola G, Petolicchio B, Di Renzo A, Tinelli E, Di Lorenzo C, Parisi V, Serrao M, Calistri V, Tardioli S, Cartocci G, Ambrosini A, Caramia F, Di Piero V, Pierelli F. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features. J Headache Pain 2017; 18:115. [PMID: 29322264 PMCID: PMC5762618 DOI: 10.1186/s10194-017-0825-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
Background To date, few MRI studies have been performed in patients affected by chronic migraine (CM), especially in those without medication overuse. Here, we performed magnetic resonance imaging (MRI) voxel-based morphometry (VBM) analyses to investigate the gray matter (GM) volume of the whole brain in patients affected by CM. Our aim was to investigate whether fluctuations in the GM volumes were related to the clinical features of CM. Methods Twenty untreated patients with CM without a past medical history of medication overuse underwent 3-Tesla MRI scans and were compared to a group of 20 healthy controls (HCs). We used SPM12 and the CAT12 toolbox to process the MRI data and to perform VBM analyses of the structural T1-weighted MRI scans. The GM volume of patients was compared to that of HCs with various corrected and uncorrected thresholds. To check for possible correlations, patients’ clinical features and GM maps were regressed. Results Initially, we did not find significant differences in the GM volume between patients with CM and HCs (p < 0.05 corrected for multiple comparisons). However, using more-liberal uncorrected statistical thresholds, we noted that compared to HCs, patients with CM exhibited clusters of regions with lower GM volumes including the cerebellum, left middle temporal gyrus, left temporal pole/amygdala/hippocampus/pallidum/orbitofrontal cortex, and left occipital areas (Brodmann areas 17/18). The GM volume of the cerebellar hemispheres was negatively correlated with the disease duration and positively correlated with the number of tablets taken per month. Conclusion No gross morphometric changes were observed in patients with CM when compared with HCs. However, using more-liberal uncorrected statistical thresholds, we observed that CM is associated with subtle GM volume changes in several brain areas known to be involved in nociception/antinociception, multisensory integration, and analgesic dependence. We speculate that these slight morphometric impairments could lead, at least in a subgroup of patients, to the development and continuation of maladaptive acute medication usage. Electronic supplementary material The online version of this article (10.1186/s10194-017-0825-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy.
| | - Barbara Petolicchio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Antonio Di Renzo
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy
| | - Emanuele Tinelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Valentina Calistri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Stefano Tardioli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Gaia Cartocci
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Caramia
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,IRCCS-Neuromed, Pozzilli, IS, Italy
| |
Collapse
|