1
|
Skandalakis GP, Linn W, Yeh F, Kazim SF, Komaitis S, Neromyliotis E, Dimopoulos D, Drosos E, Hadjipanayis CG, Kongkham PN, Zadeh G, Stranjalis G, Koutsarnakis C, Kogan M, Evans LT, Kalyvas A. Unveiling the axonal connectivity between the precuneus and temporal pole: Structural evidence from the cingulum pathways. Hum Brain Mapp 2024; 45:e26771. [PMID: 38925589 PMCID: PMC11199201 DOI: 10.1002/hbm.26771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Wen‐Jieh Linn
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Fang‐Cheng Yeh
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Syed Faraz Kazim
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Spyridon Komaitis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Eleftherios Neromyliotis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Dimitrios Dimopoulos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Evangelos Drosos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | | | - Paul N. Kongkham
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - Gelareh Zadeh
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - George Stranjalis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Christos Koutsarnakis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Michael Kogan
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Linton T. Evans
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Aristotelis Kalyvas
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| |
Collapse
|
2
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
3
|
Martinez-Tejada LA, Imakura Y, Cho YT, Minati L, Yoshimura N. Differential processing of intrinsic vs. extrinsic coordinates in wrist movement: connectivity and chronometry perspectives. Front Neuroinform 2023; 17:1199862. [PMID: 37492243 PMCID: PMC10364451 DOI: 10.3389/fninf.2023.1199862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
This study explores brain-network differences between the intrinsic and extrinsic motor coordinate frames. A connectivity model showing the coordinate frames difference was obtained using brain fMRI data of right wrist isometric flexions and extensions movements, performed in two forearm postures. The connectivity model was calculated by machine-learning-based neural representation and effective functional connectivity using psychophysiological interaction and dynamic causal modeling analyses. The model indicated the network difference wherein the inferior parietal lobule receives extrinsic information from the rostral lingual gyrus through the superior parietal lobule and transmits intrinsic information to the Handknob, whereas extrinsic information is transmitted to the Handknob directly from the rostral lingual gyrus. A behavioral experiment provided further evidence on the difference between motor coordinate frames showing onset timing delay of muscle activity of intrinsic coordinate-directed wrist movement compared to extrinsic one. These results suggest that, if the movement is externally directed, intrinsic coordinate system information is bypassed to reach the primary motor area.
Collapse
Affiliation(s)
| | - Yuji Imakura
- School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ying-Tung Cho
- School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Mattarello, Italy
| | - Natsue Yoshimura
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan
- Neural Information Analysis Laboratories, ATR, Kyoto, Japan
| |
Collapse
|
4
|
Bencivenga F, Tullo MG, Maltempo T, von Gal A, Serra C, Pitzalis S, Galati G. Effector-selective modulation of the effective connectivity within frontoparietal circuits during visuomotor tasks. Cereb Cortex 2023; 33:2517-2538. [PMID: 35709758 PMCID: PMC10016057 DOI: 10.1093/cercor/bhac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).
Collapse
Affiliation(s)
- Federica Bencivenga
- Corresponding author: Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy.
| | | | - Teresa Maltempo
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Alessandro von Gal
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Sabrina Pitzalis
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
| |
Collapse
|
5
|
Hadjidimitrakis K, De Vitis M, Ghodrati M, Filippini M, Fattori P. Anterior-posterior gradient in the integrated processing of forelimb movement direction and distance in macaque parietal cortex. Cell Rep 2022; 41:111608. [DOI: 10.1016/j.celrep.2022.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
6
|
Ras M, Wyrwa M, Stachowiak J, Buchwald M, Nowik AM, Kroliczak G. Complex tools and motor-to-mechanical transformations. Sci Rep 2022; 12:8041. [PMID: 35577883 PMCID: PMC9110343 DOI: 10.1038/s41598-022-12142-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to use complex tools is thought to depend on multifaceted motor-to-mechanical transformations within the left inferior parietal lobule (IPL), linked to cognitive control over compound actions. Here we show using neuroimaging that demanding transformations of finger movements into proper mechanical movements of functional parts of complex tools invoke significantly the right rather than left rostral IPL, and bilateral posterior-to-mid and left anterior intraparietal sulci. These findings emerged during the functional grasp and tool-use programming phase. The expected engagement of left IPL was partly revealed by traditional region-of-interest analyses, and further modeling/estimations at the hand-independent level. Thus, our results point to a special role of right IPL in supporting sensory-motor spatial mechanisms which enable an effective control of fingers in skillful handling of complex tools. The resulting motor-to-mechanical transformations involve dynamic hand-centered to target-centered reference frame conversions indispensable for efficient interactions with the environment.
Collapse
Affiliation(s)
- M Ras
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - M Wyrwa
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - J Stachowiak
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - M Buchwald
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - A M Nowik
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - G Kroliczak
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.
| |
Collapse
|
7
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
8
|
Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct Funct 2021; 226:2951-2966. [PMID: 34524542 PMCID: PMC8541979 DOI: 10.1007/s00429-021-02377-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
The dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named "lateral grasping network", is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named "reach-to-grasp network", is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.
Collapse
|
9
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
10
|
Bakola S, Burman KJ, Bednarek S, Chan JM, Jermakow N, Worthy KH, Majka P, Rosa MGP. Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cereb Cortex 2021; 32:41-62. [PMID: 34255833 DOI: 10.1093/cercor/bhab193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.
Collapse
Affiliation(s)
- Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Piotr Majka
- Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
11
|
The Complex Hodological Architecture of the Macaque Dorsal Intraparietal Areas as Emerging from Neural Tracers and DW-MRI Tractography. eNeuro 2021; 8:ENEURO.0102-21.2021. [PMID: 34039649 PMCID: PMC8266221 DOI: 10.1523/eneuro.0102-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022] Open
Abstract
In macaque monkeys, dorsal intraparietal areas are involved in several daily visuomotor actions. However, their border and sources of cortical afferents remain loosely defined. Combining retrograde histologic tracing and MRI diffusion-based tractography, we found a complex hodology of the dorsal bank of the intraparietal sulcus (db-IPS), which can be subdivided into a rostral intraparietal area PEip, projecting to the spinal cord, and a caudal medial intraparietal area MIP lacking such projections. Both include an anterior and a posterior sector, emerging from their ipsilateral, gradient-like connectivity profiles. As tractography estimations, we used the cross-sectional area of the white matter bundles connecting each area with other parietal and frontal regions, after selecting regions of interest (ROIs) corresponding to the injection sites of neural tracers. For most connections, we found a significant correlation between the proportions of cells projecting to all sectors of PEip and MIP along the continuum of the db-IPS and tractography. The latter also revealed “false positive” but plausible connections awaiting histologic validation.
Collapse
|
12
|
Gamberini M, Passarelli L, Impieri D, Montanari G, Diomedi S, Worthy KH, Burman KJ, Reser DH, Fattori P, Galletti C, Bakola S, Rosa MGP. Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and Adjacent Areas). Cereb Cortex 2021; 31:4595-4611. [PMID: 33939798 DOI: 10.1093/cercor/bhab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Montanari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David H Reser
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, Victoria 3842, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Greulich RS, Adam R, Everling S, Scherberger H. Shared functional connectivity between the dorso-medial and dorso-ventral streams in macaques. Sci Rep 2020; 10:18610. [PMID: 33122655 PMCID: PMC7596572 DOI: 10.1038/s41598-020-75219-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/07/2020] [Indexed: 12/04/2022] Open
Abstract
Manipulation of an object requires us to transport our hand towards the object (reach) and close our digits around that object (grasp). In current models, reach-related information is propagated in the dorso-medial stream from posterior parietal area V6A to medial intraparietal area, dorsal premotor cortex, and primary motor cortex. Grasp-related information is processed in the dorso-ventral stream from the anterior intraparietal area to ventral premotor cortex and the hand area of primary motor cortex. However, recent studies have cast doubt on the validity of this separation in separate processing streams. We investigated in 10 male rhesus macaques the whole-brain functional connectivity of these areas using resting state fMRI at 7-T. Although we found a clear separation between dorso-medial and dorso-ventral network connectivity in support of the two-stream hypothesis, we also found evidence of shared connectivity between these networks. The dorso-ventral network was distinctly correlated with high-order somatosensory areas and feeding related areas, whereas the dorso-medial network with visual areas and trunk/hindlimb motor areas. Shared connectivity was found in the superior frontal and precentral gyrus, central sulcus, intraparietal sulcus, precuneus, and insular cortex. These results suggest that while sensorimotor processing streams are functionally separated, they can access information through shared areas.
Collapse
Affiliation(s)
- R Stefan Greulich
- Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077, Göttingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, Göttingen, Germany.
| | - Ramina Adam
- Robarts Research Institute, University of Western Ontario, London, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Hansjörg Scherberger
- Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077, Göttingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, Göttingen, Germany.
| |
Collapse
|
14
|
Liu Z, Schieber MH. Neuronal Activity Distributed in Multiple Cortical Areas during Voluntary Control of the Native Arm or a Brain-Computer Interface. eNeuro 2020; 7:ENEURO.0376-20.2020. [PMID: 33060178 PMCID: PMC7598906 DOI: 10.1523/eneuro.0376-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
Voluntary control of visually-guided upper extremity movements involves neuronal activity in multiple areas of the cerebral cortex. Studies of brain-computer interfaces (BCIs) that use spike recordings for input, however, have focused largely on activity in the region from which those neurons that directly control the BCI, which we call BCI units, are recorded. We hypothesized that just as voluntary control of the arm and hand involves activity in multiple cortical areas, so does voluntary control of a BCI. In two subjects (Macaca mulatta) performing a center-out task both with a hand-held joystick and with a BCI directly controlled by four primary motor cortex (M1) BCI units, we recorded the activity of other, non-BCI units in M1, dorsal premotor cortex (PMd) and ventral premotor cortex (PMv), primary somatosensory cortex (S1), dorsal posterior parietal cortex (dPPC), and the anterior intraparietal area (AIP). In most of these areas, non-BCI units were active in similar percentages and at similar modulation depths during both joystick and BCI trials. Both BCI and non-BCI units showed changes in preferred direction (PD). Additionally, the prevalence of effective connectivity between BCI and non-BCI units was similar during both tasks. The subject with better BCI performance showed increased percentages of modulated non-BCI units with increased modulation depth and increased effective connectivity during BCI as compared with joystick trials; such increases were not found in the subject with poorer BCI performance. During voluntary, closed-loop control, non-BCI units in a given cortical area may function similarly whether the effector is the native upper extremity or a BCI-controlled device.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627
| | - Marc H Schieber
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627
- Department of Neurology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
15
|
Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K. Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. eLife 2020; 9:55979. [PMID: 32613942 PMCID: PMC7365665 DOI: 10.7554/elife.55979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an ‘intermediate’ cluster of multimodal association areas. Thus, differences in cyto-/myelo- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniele Impieri
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
16
|
Looming and receding visual networks in awake marmosets investigated with fMRI. Neuroimage 2020; 215:116815. [DOI: 10.1016/j.neuroimage.2020.116815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
|
17
|
Ma L, Selvanayagam J, Ghahremani M, Hayrynen LK, Johnston KD, Everling S. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol 2020; 123:896-911. [DOI: 10.1152/jn.00614.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.
Collapse
Affiliation(s)
- Liya Ma
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Maryam Ghahremani
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Lauren K. Hayrynen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kevin D. Johnston
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Hadjidimitrakis K, Ghodrati M, Breveglieri R, Rosa MGP, Fattori P. Neural coding of action in three dimensions: Task- and time-invariant reference frames for visuospatial and motor-related activity in parietal area V6A. J Comp Neurol 2020; 528:3108-3122. [PMID: 32080849 DOI: 10.1002/cne.24889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of "pure" body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Masoud Ghodrati
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain function, Monash University, Clayton, Victoria, Australia
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello G P Rosa
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain function, Monash University, Clayton, Victoria, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 2020; 11:1133. [PMID: 32111833 PMCID: PMC7048793 DOI: 10.1038/s41467-020-14858-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains. Understanding principles of neuronal connectivity requires tools for quantification and visualization of large datasets. Here, the authors introduce an online resource encompassing the coordinates of two million neurons labelled by tracer injections in the marmoset cortex, and analysis tools.
Collapse
|
20
|
Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct Funct 2019; 225:1349-1367. [DOI: 10.1007/s00429-019-01976-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
|
21
|
Topographic Organization of the 'Third-Tier' Dorsomedial Visual Cortex in the Macaque. J Neurosci 2019; 39:5311-5325. [PMID: 31036760 DOI: 10.1523/jneurosci.0085-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/21/2022] Open
Abstract
The boundaries of the visual areas located anterior to V2 in the dorsomedial region of the macaque cortex remain contentious. This region is usually conceptualized as including two functional subdivisions: the dorsal component of area V3 (V3d) laterally and another area named the parietooccipital area (PO) or V6 medially. However, the nature of the putative border between V3d and PO/V6 has remained undefined. We recorded the receptive fields of multiunit clusters in male macaques and reconstructed the locations of recording sites using histological sections and computer-generated maps. Immediately adjacent to dorsomedial V2, we observed a representation of the lower contralateral quadrant that represented the vertical meridian at its rostral border. This region formed a simple eccentricity gradient from ∼<5° in the annectant gyrus to >60° in the parietooccipital medial sulcus. There was no topographic reversal where one would expect to find the border between V3d and PO/V6. Rather, near the midline, this lower quadrant map continued directly into a representation of the peripheral upper visual field without an intervening lower quadrant representation. Therefore, cortex previously assigned to the medial part of V3d and to PO/V6 forms a single map that includes parts of both quadrants. Together with previous observations that V3d and PO/V6 are densely myelinated relative to adjacent cortex and share similar input from V1, these results suggest that they are parts of a single area (for which we suggest the designation V6), which is distinct from the one forming the ventral component of the third-tier complex.SIGNIFICANCE STATEMENT The primate visual cortex has a large number of areas. Knowing the extent of each visual area and how they can be distinguished from each other is essential for the interpretation of experiments aimed at understanding visual processing. Currently, there are conflicting models of the organization of the dorsomedial visual cortex rostral to area V2 (one of the earliest stages of cortical processing of vision). By conducting large-scale electrophysiological recordings, we found that what were originally thought to be distinct areas in this region (dorsal V3 and the parietooccipital area PO/V6), together form a single map of the visual field. This will help to guide future functional studies and the interpretation of the outcomes of lesions involving the dorsal visual cortex.
Collapse
|
22
|
Ugolini G, Prevosto V, Graf W. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance. Eur J Neurosci 2019; 50:2988-3013. [DOI: 10.1111/ejn.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ugolini
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Vincent Prevosto
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
- Department of Biomedical Engineering Pratt School of Engineering Durham North Carolina
- Department of Neurobiology Duke School of Medicine Duke University Durham North Carolina
| | - Werner Graf
- Department of Physiology and Biophysics Howard University Washington District of Columbia
| |
Collapse
|
23
|
Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA. Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Front Neural Circuits 2019; 13:15. [PMID: 30914925 PMCID: PMC6421332 DOI: 10.3389/fncir.2019.00015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Department of Electrical and Computer Science Engineering, Monash University, Clayton, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| |
Collapse
|