1
|
Ren H, Wang Z, Zhang L, Zhu G, Li F, Chen B. Clinical significance of low expression of CADM3 in breast cancer and preliminary exploration of related mechanisms. BMC Cancer 2024; 24:367. [PMID: 38515057 PMCID: PMC10958964 DOI: 10.1186/s12885-024-12114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cell adhesion molecule 3 (CADM3), a transmembrane glycoprotein on cell membranes, plays a role in the way of ligand and receptor interaction. However, there are few studies on CADM3 in tumors, and how it works in breast cancer (BC) remains unclear. METHODS The Cancer Genome Atlas (TCGA) database and clinical samples were used to analyze CADM3 expression and its correlation with clinicopathological factors and prognosis. Its correlation with immune infiltration was analyzed by TCGA. The effects of CADM3 on proliferation and migration were investigated by cell clonal formation, CCK-8, cell scratch and transwell assay. Protein interaction network was prepared and the function prediction of related genes was conducted. The correlation between CADM3 and MAPK pathway was further explored by western blot experiment. RESULTS The expression of CADM3 in BC tissues were significantly lower than that in adjacent normal tissues. High level of CADM3 was related to better prognosis of BC patients. CADM3 was an independent prognostic factor for BC. Expression of CADM3 was significantly associated with the status of ER and PR, age and PAM50 subtypes. CADM3 positively related to many immune infiltrating cells. Overexpression of CADM3 can notably reduce cell proliferation and migration. CADM3 was related to MAPK pathway and the phosphorylation of ERK1/2 and JNK1 was inhibited in BC cells with high CADM3. CONCLUSIONS Our research reveals the clinical significance of CADM3 in BC and indicates the critical roles of CADM3 in immune infiltration and MAPK pathway.
Collapse
Affiliation(s)
- Huiyang Ren
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Zhen Wang
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Lei Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Guolian Zhu
- Department of Breast Surgery, the Fifth People's Hospital of Shenyang, 188 Xingshun Street, Tiexi District, Shenyang City, Liaoning, 110023, China.
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110122, China.
| | - Bo Chen
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| |
Collapse
|
2
|
Khan R, Kulasiri D, Samarasinghe S. A multifarious exploration of synaptic tagging and capture hypothesis in synaptic plasticity: Development of an integrated mathematical model and computational experiments. J Theor Biol 2023; 556:111326. [PMID: 36279957 DOI: 10.1016/j.jtbi.2022.111326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The synaptic tagging and capture (STC) hypothesis not only explain the integration and association of synaptic activities, but also the formation of learning and memory. The synaptic pathways involved in the synaptic tagging and capture phenomenon are called STC pathways. The STC hypothesis provides a potential explanation of the neuronal and synaptic processes underlying the synaptic consolidation of memories. Several mechanisms and molecules have been proposed to explain the process of memory allocation and synaptic tags, respectively. However, a clear link between the STC hypothesis and memory allocation is still missing because the encoding of memories in neural circuits is mainly associated with strongly recurrently connected groups of neurons. To explore the mechanisms of potential synaptic tagging candidates and their involvement in the process of memory allocation, we develop a mathematical model for a single dendritic spine based on five essential criteria of a synaptic tag. By developing a mathematical model, we attempt to understand the roles of the potentially critical molecular networks underlying the STC and the essential attributes of a synaptic tag. We include essential memory molecules in the STC model that have been identified in earlier studies as crucial for STC pathways. CaMKII activation is critical for the setting of the initial tag; however, coordinated activities with other kinases and the biochemical pathways are necessary for the tag to be stable. PKA modulates NMDAR-mediated Ca2+ signalling. Similarly, PKA and ERK crosstalk is essential for Ca2+ - mediated protein synthesis during l-LTP. Our theoretical model explains the quantitative contribution of Tags and protein synthesis during l-LTP in synaptic strength.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
3
|
Xu W, Yu H, Chen D, Pan W, Yang W, Miao J, Jia W, Zheng B, Liu Y, Chen X, Gao Y, Tian D. Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets. WORLD JOURNAL OF PEDIATRIC SURGERY 2023; 6:e000547. [PMID: 37082700 PMCID: PMC10111925 DOI: 10.1136/wjps-2022-000547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
Objective Hirschsprung disease (HSCR) is one of the common neurocristopathies in children, which is associated with at least 20 genes and involves a complex regulatory mechanism. Transcriptional regulatory network (TRN) has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR. This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR. Methods Based on three microarray datasets from the Gene Expression Omnibus database, the multiMiR package was used to investigate the microRNA (miRNA)-target interactions, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we collected transcription factors (TFs) from the TransmiR database to construct the TF-miRNA-mRNA regulatory network and used cytoHubba to identify the key modules. Finally, the receiver operating characteristic (ROC) curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method. Results We identified 58 hub differentially expressed microRNAs (DEMis) and 16 differentially expressed mRNAs (DEMs). The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms, including neurogenesis, cell-substrate adhesion, PI3K-Akt, Ras/mitogen-activated protein kinase and Rho/ROCK signaling. Moreover, 2 TFs (TP53 and TWIST1), 4 miRNAs (has-miR-107, has-miR-10b-5p, has-miR-659-3p, and has-miR-371a-5p), and 4 mRNAs (PIM3, CHUK, F2RL1, and CA1) were identified to construct the TF-miRNA-mRNA regulatory network. ROC analysis revealed a strong diagnostic value of the key TRN regulons (all area under the curve values were more than 0.8). Conclusion This study suggests a potential role of the TF-miRNA-mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.
Collapse
Affiliation(s)
- Wenyao Xu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Dian Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Weikang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weili Yang
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Miao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wanying Jia
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Zhang Y, Liu RY, Smolen P, Cleary LJ, Byrne JH. Dynamics and Mechanisms of ERK Activation after Different Protocols that Induce Long-Term Synaptic Facilitation in Aplysia. OXFORD OPEN NEUROSCIENCE 2022; 2:kvac014. [PMID: 37649778 PMCID: PMC10464504 DOI: 10.1093/oons/kvac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Indexed: 09/01/2023]
Abstract
Phosphorylation of the MAPK family member extracellular signal-regulated kinase (ERK) is required to induce long-term synaptic plasticity, but little is known about its persistence. We examined ERK activation by three protocols that induce long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse - the standard protocol (five 5-min pulses of 5-HT with interstimulus intervals (ISIs) of 20 min), the enhanced protocol (five pulses with irregular ISIs, which induces greater and longer-lasting LTF) and the two-pulse protocol (two pulses with ISI 45 min). Immunofluorescence revealed complex ERK activation. The standard and two-pulse protocols immediately increased active, phosphorylated ERK (pERK), which decayed within 5 h. A second wave of increased pERK was detected 18 h post-treatment for all protocols. This late phase was blocked by inhibitors of protein kinase A, TrkB and TGF-β. These results suggest that complex interactions among kinase pathways and growth factors contribute to the late increase of pERK. ERK activity returned to basal 24 h after the standard or two-pulse protocols, but remained elevated 24 h for the enhanced protocol. This 24-h elevation was also dependent on PKA and TGF-β, and partly on TrkB. These results begin to characterize long-lasting ERK activation, plausibly maintained by positive feedback involving growth factors and PKA, that appears essential to maintain LTF and LTM. Because many processes involved in LTF and late LTP are conserved among Aplysia and mammals, these findings highlight the importance of examining the dynamics of kinase cascades involved in vertebrate long-term memory.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX 77030, United States
| | - Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX 77030, United States
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX 77030, United States
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX 77030, United States
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX 77030, United States
| |
Collapse
|
5
|
Precise timing of ERK phosphorylation/dephosphorylation determines the outcome of trial repetition during long-term memory formation. Proc Natl Acad Sci U S A 2022; 119:e2210478119. [PMID: 36161885 DOI: 10.1073/pnas.2210478119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-trial learning in Aplysia reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT). Specifically, dual ERK phosphorylation at its activating TxY motif is accompanied by dephosphorylation at the pT position, leading to a buildup of inactive, singly phosphorylated pY-ERK. Phosphorylation and dephosphorylation occur concurrently but scale differently with varying 5HT concentrations, predicting that mixed two-trial protocols involving both "strong" and "weak" 5HT pulses should be sensitive to the precise order and timing of trials. Indeed, long-term synaptic facilitation is induced only when weak pulses precede strong, not vice versa. This may represent a physiological mechanism to prioritize memory of escalating threats.
Collapse
|
6
|
Quantitative description of the interactions among kinase cascades underlying long-term plasticity of Aplysia sensory neurons. Sci Rep 2021; 11:14931. [PMID: 34294802 PMCID: PMC8298407 DOI: 10.1038/s41598-021-94393-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Kinases play critical roles in synaptic and neuronal changes involved in the formation of memory. However, significant gaps exist in the understanding of how interactions among kinase pathways contribute to the mechanistically distinct temporal domains of memory ranging from short-term memory to long-term memory (LTM). Activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathways are critical for long-term enhancement of neuronal excitability (LTEE) and long-term synaptic facilitation (LTF), essential processes in memory formation. This study provides new insights into how these pathways contribute to the temporal domains of memory, using empirical and computational approaches. Empirical studies of Aplysia sensory neurons identified a positive feedforward loop in which the PKA and ERK pathways converge to regulate RSK, and a negative feedback loop in which p38 MAPK inhibits the activation of ERK and RSK. A computational model incorporated these findings to simulate the dynamics of kinase activity produced by different stimulus protocols and predict the critical roles of kinase interactions in the dynamics of these pathways. These findings may provide insights into the mechanisms underlying aberrant synaptic plasticity observed in genetic disorders such as RASopathies and Coffin-Lowry syndrome.
Collapse
|
7
|
Cheng AA, Li W, Walker TM, Silvers C, Arendt LM, Hernandez LL. Investigating the complex interplay between genotype and high-fat-diet feeding in the lactating mammary gland using the Tph1 and Ldlr knockout models. Am J Physiol Endocrinol Metab 2021; 320:E438-E452. [PMID: 33427054 PMCID: PMC7988787 DOI: 10.1152/ajpendo.00456.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Obesity is a prevailing problem across the globe. Women who are obese have difficulty initiating and sustaining lactation. However, the impact of genetics and diet on breastfeeding outcomes is understudied. Here we explore the effect of diet and genotype on lactation. We utilized the low-density lipoprotein receptor (Ldlr-KO) transgenic mouse model as an obesity and hypercholesterolemia model. Additionally, we used the tryptophan hydroxylase 1 (Tph1-KO) mouse, recently identified as a potential anti-obesogenic model, to investigate if addition of Tph1-KO could ameliorate negative effects of obesity in Ldlr-KO mice. We created a novel transgenic mouse line by combining the Ldlr and Tph1 [double knockout (DKO)] mice to study the interaction between the two genotypes. Female mice were fed a low-fat diet (LFD; 10% fat) or high-fat diet (HFD; 60% fat) from 3 wk of age through early [lactation day 3 (L3)] or peak lactation [lactation day 11 (L11)]. After 4 wk of consuming either LFD or HFD, female mice were bred. On L2 and L10, dams were milked to investigate the effect of diet and genotype on milk composition. Dams were euthanized on L3 or L11. There was no impact of diet or genotype on milk protein or triglycerides (TGs) on L2; however, by L10, Ldlr-KO and DKO dams had increased TG levels in milk. RNA-sequencing of L11 mammary glands demonstrated Ldlr-KO dams fed HFD displayed enrichment of genes involved in immune system pathways. Interestingly, the DKO may alter vesicle budding and biogenesis during lactation. We also quantified macrophages by immunostaining for F4/80+ cells at L3 and L11. Diet played a significant role on L3 (P = 0.013), but genotype played a role at L11 (P < 0.0001) on numbers of F4/80+ cells. Thus the impact of diet and genotype on lactation differs depending on stage of lactation, illustrating complexities of understanding the intersection of these parameters.NEW & NOTEWORTHY We have created a novel mouse model that is focused on understanding the intersection of diet and genotype on mammary gland function during lactation.
Collapse
Affiliation(s)
- Adrienne A Cheng
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - Wenli Li
- US Department of Agriculture-Dairy Forage, Madison, Wisconsin
| | - Teresa M Walker
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - Caylee Silvers
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
8
|
ELAV Proteins Bind and Stabilize C/EBP mRNA in the Induction of Long-Term Memory in Aplysia. J Neurosci 2020; 41:947-959. [PMID: 33298536 DOI: 10.1523/jneurosci.2284-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Long-term memory (LTM) formation is a critical survival process by which an animal retains information about prior experiences to guide future behavior. In the experimentally advantageous marine mollusk Aplysia, LTM for sensitization can be induced by the presentation of two aversive shocks to the animal's tail. Each of these training trials recruits distinct growth factor signaling systems that promote LTM formation. Specifically, whereas intact TrkB signaling during Trial 1 promotes an initial and transient increase of the immediate early gene apc/ebp mRNA, a prolonged increase in apc/ebp gene expression required for LTM formation requires the addition of TGFβ signaling during Trial 2. Here we explored the molecular mechanisms by which Trial 2 achieves the essential prolonged gene expression of apc/ebp We find that this prolonged gene expression is not dependent on de novo transcription, but that apc/ebp mRNA synthesized by Trial 1 is post-transcriptionally stabilized by interacting with the RNA-binding protein ApELAV. This interaction is promoted by p38 MAPK activation initiated by TGFβ. We further demonstrate that blocking the interaction of ApELAV with its target mRNA during Trial 2 blocks both the prolonged increase in apc/ebp gene expression and the behavioral induction of LTM. Collectively, our findings elucidate both when and how ELAV proteins are recruited for the stabilization of mRNA in LTM formation. Stabilization of a transiently expressed immediate early gene mRNA by a repeated training trial may therefore serve as a "filter" for learning, permitting only specific events to cause lasting transcriptional changes and behavioral LTM.SIGNIFICANCE STATEMENT: In the present paper, we significantly extend the general field of molecular processing in long-term memory (LTM) by describing a novel form of pretranslational processing required for LTM, which relies on the stabilization of a newly synthesized mRNA by a class of RNA binding proteins (ELAVs). There are now compelling data showing that important processing can occur after transcription of a gene, but before translation of the message into protein. Although the potential importance of ELAV proteins in LTM formation has previously been reported, the specific actions of ELAV proteins during LTM formation remained to be understood. Our new findings thus complement and extend this literature by demonstrating when and how this post-transcriptional gene regulation is mediated in the induction of LTM.
Collapse
|
9
|
P38 Signal Transduction Pathway Has More Cofactors on Apoptosis of SGC-7901 Gastric Cancer Cells Induced by Combination of Rutin and Oxaliplatin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6407210. [PMID: 31781632 PMCID: PMC6875277 DOI: 10.1155/2019/6407210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Currently, gastric cancer treatment is mainly based on first-line intervention with oxaliplatin (OXA) after surgical resection, but the application of OXA has been limited due to the toxic side effects caused by the cumulative dose. The toxicity of OXA mainly includes hepatotoxicity, nephrotoxicity, and ototoxicity, and there is an urgent clinical need to find alternatives that are less toxic and more effective. Rutin (RT) is a natural flavonoid with many biological activities. Studies have found that RT inhibits tumor cell growth and enhances their sensitivity toward certain drugs. As the underlying impact of RT on gastric cancer and its molecular mechanism remain poorly understood, we performed a series of experiments to determine whether RT has the effect of treating gastric cancer, and whether it can cooperate with OXA to treat gastric cancer and its related mechanisms. In the present study, we founded that RT suppressed cell viability, inhibited cell proliferation by causing G0/G1 arrest, and induced apoptosis in SGC 7901 cells. And RT can play as an antitumor agent together with OXA. The mechanism of RT-induced apoptosis may be associated with the activation of the p38/Caspase signal pathway. These results demonstrated the potential of RT as a promising therapeutic compound to treat gastric cancer. At the same time, RT can synergize with OXA to reduce the dose of OXA and reduce the toxicity.
Collapse
|