1
|
Yu Z, Fu Q, Qiu T, Yang C, Lu M, Peng Q, Yang J, Hu Z. Role of Rab10 in cocaine-induced behavioral effects is associated with GABAB receptor membrane expression in the nucleus accumbens. Front Pharmacol 2024; 15:1496657. [PMID: 39669198 PMCID: PMC11635607 DOI: 10.3389/fphar.2024.1496657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Aim Previous studies have demonstrated that Ras-related GTP-binding protein Rab10 (Rab10) plays a role in psychostimulant-induced behavioral effects. In this study, we showed that Rab10 in the nucleus accumbens (NAc) of male animals affects the development of cocaine-induced behavioral effects, which are associated with the plasma membrane expression of the GABAB heteroreceptor (GABABR). Methods We performed flow cytometry, immunoendocytosis, pHluorin activity analysis, electrophysiology analysis, and open-field testing to explore the role of Rab10 in modulating the membrane expression and function of GABABR and its regulatory effect on cocaine-induced behavioral effects. Results Transcriptomics analysis showed that Rab10 was elevated following acute cocaine treatment. Membrane levels of Rab10 increased within day 1 of the cocaine treatment, subsequently decreasing at later time points. Rab10 deficiency in NAc regions significantly increased cocaine-inhibited membrane GABABR levels and inhibited cocaine-induced hyperlocomotion and behavioral sensitization. In addition, GAD 67 + -expressing neurons from NAc regions treated with cocaine revealed a significant decrease in Rab10 membrane expression. Furthermore, NAc neuron-specific Rab10 knockout resulted in a significant increase in the cocaine-inhibited membrane expression of GABABR, along with increased miniature inhibitory postsynaptic current (mIPSC) amplitude and attenuation of baclofen-amplified Ca2+ influx. Conclusion These results uncover a new mechanism in which Rab10-GABABR signaling may serve as a potential pathway for regulating cocaine-induced behavioral effects.
Collapse
Affiliation(s)
- Zhuoxuan Yu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Tianyun Qiu
- Department of Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Caidi Yang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Mingfen Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinghua Peng
- Department of Anesthesiology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhen Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Li S, Zhang J, Liu X, Wang N, Sun L, Liu J, Liu X, Masoudi A, Wang H, Li C, Guo C, Liu X. Proteomic characterization of hUC-MSC extracellular vesicles and evaluation of its therapeutic potential to treat Alzheimer's disease. Sci Rep 2024; 14:5959. [PMID: 38472335 PMCID: PMC10933327 DOI: 10.1038/s41598-024-56549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.
Collapse
Affiliation(s)
- Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinxing Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Luyao Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianling Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
- Cancer Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Xingliang Liu
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunxia Li
- Obstetrics and Gynaecology, The Fifth Hospital of Zhangjiakou, Zhangjiakou, 075000, China
| | - Chunyan Guo
- Hebei Key Laboratory of Neuropharmacology; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|