1
|
Ninghetto M, Kozak A, Gałecki T, Szulborski K, Szaflik JP, Ołdak M, Marchewka A, Burnat K. Good vision without peripheries: behavioral and fMRI evidence. Sci Rep 2024; 14:26264. [PMID: 39487160 PMCID: PMC11530436 DOI: 10.1038/s41598-024-76879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
In healthy vision, bright slow-motion stimuli are processed primarily by the regions of the visual system that receive input from the central part of the scene, whereas processing of dark fast-motion stimuli is more dependent on peripheral visual input. We tested 31 retinitis pigmentosa (RP) patients with long-term loss of peripheral photoreceptors and healthy controls with temporarily limited peripheral vision. We measured motion-based acuity using random-dot kinematograms, establishing individual thresholds for differentiating a circle from an ellipse. Participants subsequently performed a functional magnetic resonance imaging (fMRI) task set at a constant level of difficulty. The results showed that limiting vision did not affect motion-acuity thresholds in control participants but did cause different brain activations than those in RP patients, indicating prompt implementation of the strategy that would be perceptually successful. Compared with controls with both full and limited vision, impaired motion acuity in RP patients led to decreased brain activation, particularly in the primary peripheral visual areas V1-3. Importantly, compared with controls in full vision, matched decreased activation in MT+/V5, salience-processing cortices and the superior temporal cortex were detected in RP patients and in controls with limited peripheral vision, revealing brain networks that compensate for the loss of peripheral vision.
Collapse
Affiliation(s)
- M Ninghetto
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - A Kozak
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - T Gałecki
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - K Szulborski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - J P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - M Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - A Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - K Burnat
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Kang KYL, Rosenkranz R, Altinsoy ME, Li SC. Cortical processes of multisensory plausibility modulation of vibrotactile perception in virtual environments in middled-aged and older adults. Sci Rep 2024; 14:13366. [PMID: 38862559 PMCID: PMC11166973 DOI: 10.1038/s41598-024-64054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Digital technologies, such as virtual or augmented reality, can potentially support neurocognitive functions of the aging populations worldwide and complement existing intervention methods. However, aging-related declines in the frontal-parietal network and dopaminergic modulation which progress gradually across the later periods of the adult lifespan may affect the processing of multisensory congruence and expectancy based contextual plausibility. We assessed hemodynamic brain responses while middle-aged and old adults experienced car-riding virtual-reality scenarios where the plausibility of vibrotactile stimulations was manipulated by delivering stimulus intensities that were either congruent or incongruent with the digitalized audio-visual contexts of the respective scenarios. Relative to previous findings observed in young adults, although highly plausible vibrotactile stimulations confirming with contextual expectations also elicited higher brain hemodynamic responses in middle-aged and old adults, this effect was limited to virtual scenarios with extreme expectancy violations. Moreover, individual differences in plausibility-related frontal activity did not correlate with plausibility violation costs in the sensorimotor cortex, indicating less systematic frontal context-based sensory filtering in older ages. These findings have practical implications for advancing digital technologies to support aging societies.
Collapse
Affiliation(s)
- Kathleen Y L Kang
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.
- Faculty of Psychology, Technische Universität Dresden, Zellerscher Weg 17 Room A232/233, 01069, Dresden, Germany.
- School of Psychology and Vision Sciences, University of Leicester, Leicester, UK.
| | - Robert Rosenkranz
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Mehmet Ercan Altinsoy
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.
- Faculty of Psychology, Technische Universität Dresden, Zellerscher Weg 17 Room A232/233, 01069, Dresden, Germany.
| |
Collapse
|
4
|
Scharf C, Koschutnig K, Zussner T, Fink A, Tilp M. Twelve weeks of physical exercise breaks with coordinative exercises at the workplace increase the sulcal depth and decrease gray matter volume in brain structures related to visuomotor processes. Brain Struct Funct 2024; 229:63-74. [PMID: 38070007 PMCID: PMC10827861 DOI: 10.1007/s00429-023-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
Physical exercise can evoke changes in the brain structure. Consequently, these can lead to positive impacts on brain health. However, physical exercise studies including coordinative exercises are rare. Therefore, in this study, we investigated how 12 weeks of physical exercise breaks (PEBs) with coordinative exercises, focusing mainly on juggling tasks, affected the brain structure. The participants were randomly allocated to an intervention group (IG, n = 16; 42.8 ± 10.2 years) and a control group (CG, n = 9; 44.2 ± 12.3 years). The IG performed the PEBs with coordinative exercises twice per week for 15-20 min per session. Before the intervention, after 6 weeks of the intervention, and after 12 weeks of the intervention, participants underwent a high-resolution 3T T1-weighted magnetic resonance imagining scan. Juggling performance was assessed by measuring the time taken to perform a three-ball cascade. A surface-based analysis revealed an increase in vertex-wise cortical depth in a cluster including the inferior parietal lobe after 6 and 12 weeks of training in the IG. After 12 weeks, the IG showed a decrease in gray matter (GM) volume in a cluster primarily involving the right insula and the right operculum. The changes in the GM volume were related to improvements in juggling performance. No significant changes were found for the CG. To conclude, the present study showed that regular engagement in PEBs with coordinative exercises led to changes in brain structures strongly implicated in visuomotor processes involving hand and arm movements.
Collapse
Affiliation(s)
- Carina Scharf
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria.
| | - Karl Koschutnig
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas Zussner
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Markus Tilp
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria
| |
Collapse
|
5
|
Olszewska AM, Droździel D, Gaca M, Kulesza A, Obrębski W, Kowalewski J, Widlarz A, Marchewka A, Herman AM. Unlocking the musical brain: A proof-of-concept study on playing the piano in MRI scanner with naturalistic stimuli. Heliyon 2023; 9:e17877. [PMID: 37501960 PMCID: PMC10368778 DOI: 10.1016/j.heliyon.2023.e17877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Music is a universal human phenomenon, and can be studied for itself or as a window into the understanding of the brain. Few neuroimaging studies investigate actual playing in the MRI scanner, likely because of the lack of available experimental hardware and analysis tools. Here, we offer an innovative paradigm that addresses this issue in neuromusicology using naturalistic, polyphonic musical stimuli, presents a commercially available MRI-compatible piano, and a flexible approach to quantify participant's performance. We show how making errors while playing can be investigated using an altered auditory feedback paradigm. In the spirit of open science, we make our experimental paradigms and analysis tools available to other researchers studying pianists in MRI. Altogether, we present a proof-of-concept study which shows the feasibility of playing the novel piano in MRI, and a step towards using more naturalistic stimuli.
Collapse
Affiliation(s)
- Alicja M. Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Agnieszka Kulesza
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wojciech Obrębski
- Department of Nuclear and Medical Electronics, Faculty of Electronics and Information Technology, Warsaw University of Technology, 1 Politechniki Square, 00-661 Warsaw, Poland
- 10 Murarska Street, 08-110 Siedlce, Poland
| | | | - Agnieszka Widlarz
- Chair of Rhythmics and Piano Improvisation, Department of Choir Conducting and Singing, Music Education and Rhythmics, The Chopin University of Music, Okolnik 2 Street, 00–368 Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Aleksandra M. Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
6
|
Unger N, Haeck M, Eickhoff SB, Camilleri JA, Dickscheid T, Mohlberg H, Bludau S, Caspers S, Amunts K. Cytoarchitectonic mapping of the human frontal operculum-New correlates for a variety of brain functions. Front Hum Neurosci 2023; 17:1087026. [PMID: 37448625 PMCID: PMC10336231 DOI: 10.3389/fnhum.2023.1087026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 07/15/2023] Open
Abstract
The human frontal operculum (FOp) is a brain region that covers parts of the ventral frontal cortex next to the insula. Functional imaging studies showed activations in this region in tasks related to language, somatosensory, and cognitive functions. While the precise cytoarchitectonic areas that correlate to these processes have not yet been revealed, earlier receptorarchitectonic analysis resulted in a detailed parcellation of the FOp. We complemented this analysis by a cytoarchitectonic study of a sample of ten postmortem brains and mapped the posterior FOp in serial, cell-body stained histological sections using image analysis and multivariate statistics. Three new areas were identified: Op5 represents the most posterior area, followed by Op6 and the most anterior region Op7. Areas Op5-Op7 approach the insula, up to the circular sulcus. Area 44 of Broca's region, the most ventral part of premotor area 6, and parts of the parietal operculum are dorso-laterally adjacent to Op5-Op7. The areas did not show any interhemispheric or sex differences. Three-dimensional probability maps and a maximum probability map were generated in stereotaxic space, and then used, in a first proof-of-concept-study, for functional decoding and analysis of structural and functional connectivity. Functional decoding revealed different profiles of cytoarchitectonically identified Op5-Op7. While left Op6 was active in music cognition, right Op5 was involved in chewing/swallowing and sexual processing. Both areas showed activation during the exercise of isometric force in muscles. An involvement in the coordination of flexion/extension could be shown for the right Op6. Meta-analytic connectivity modeling revealed various functional connections of the FOp areas within motor and somatosensory networks, with the most evident connection with the music/language network for Op6 left. The new cytoarchitectonic maps are part of Julich-Brain, and publicly available to serve as a basis for future analyses of structural-functional relationships in this region.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia A. Camilleri
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|