1
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
2
|
Ondrejcak T, Klyubin I, Hu NW, Yang Y, Zhang Q, Rodriguez BJ, Rowan MJ. Rapidly reversible persistent long-term potentiation inhibition by patient-derived brain tau and amyloid ß proteins. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230234. [PMID: 38853565 PMCID: PMC11343230 DOI: 10.1098/rstb.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 06/11/2024] Open
Abstract
How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts. We also explored the persistence of the inhibition of LTP by different synaptotoxic tau preparations. A single intracerebral injection of aggregates of recombinant human tau that had been prepared by either sonication of fibrils (SτAs) or disulfide bond formation (oTau) rapidly and persistently inhibited LTP in rat hippocampus. The threshold for the acute inhibitory effect of oTau was lowered in amyloid precursor protein (APP)-transgenic rats. A single injection of synaptotoxic tau-containing AD or Pick's disease brain extracts also inhibited LTP, for over two weeks. Remarkably, the persistent disruption of synaptic plasticity by patient-derived brain tau was rapidly reversed by a single intracerebral injection of different anti-tau monoclonal antibodies, including one directed to a specific human tau amino acid sequence. We conclude that patient-derived LTP-disrupting tau species persist in the brain for weeks, maintaining their neuroactivity often in concert with Aß. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Republic of Ireland
| | - Igor Klyubin
- Department of Pharmacology and Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Republic of Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Republic of Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou450001, People's Republic of China
| | - Yin Yang
- Department of Pharmacology and Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Republic of Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou450001, People's Republic of China
| | - Qiancheng Zhang
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Brian J. Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Michael J. Rowan
- Department of Pharmacology and Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Republic of Ireland
| |
Collapse
|
3
|
Chen Y, Song S, Parhizkar S, Lord J, Zhu Y, Strickland MR, Wang C, Park J, Travis Tabor G, Jiang H, Li K, Davis AA, Yuede CM, Colonna M, Ulrich JD, Holtzman DM. APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread. Cell 2024; 187:428-445.e20. [PMID: 38086389 PMCID: PMC10842861 DOI: 10.1016/j.cell.2023.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aβ plaques, which suppresses Aβ-induced tau seeding and spreading. The results reveal new possibilities to target Aβ-induced tauopathy.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sihui Song
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samira Parhizkar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Lord
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiyang Zhu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R. Strickland
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiyu Park
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert A. Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Yang Y, Ondrejcak T, Hu NW, Islam S, O'Rourke E, Reilly RB, Cunningham C, Rowan MJ, Klyubin I. Gamma-patterned sensory stimulation reverses synaptic plasticity deficits in rat models of early Alzheimer's disease. Eur J Neurosci 2023; 58:3402-3411. [PMID: 37655756 DOI: 10.1111/ejn.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Non-invasive sensory stimulation in the range of the brain's gamma rhythm (30-100 Hz) is emerging as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). Here, we investigated the effect of repeated combined exposure to 40 Hz synchronized sound and light stimuli on hippocampal long-term potentiation (LTP) in vivo in three rat models of early AD. We employed a very complete model of AD amyloidosis, amyloid precursor protein (APP)-overexpressing transgenic McGill-R-Thy1-APP rats at an early pre-plaque stage, systemic treatment of transgenic APP rats with corticosterone modelling certain environmental AD risk factors and, importantly, intracerebral injection of highly disease-relevant AD patient-derived synaptotoxic beta-amyloid and tau in wild-type animals. We found that daily treatment with 40 Hz sensory stimulation for 2 weeks fully abrogated the inhibition of LTP in all three models. Moreover, there was a negative correlation between the magnitude of LTP and the level of active caspase-1 in the hippocampus of transgenic APP animals, which suggests that the beneficial effect of 40 Hz stimulation was dependent on modulation of pro-inflammatory mechanisms. Our findings support ongoing clinical trials of gamma-patterned sensory stimulation in early AD.
Collapse
Affiliation(s)
- Yin Yang
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sadia Islam
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eugene O'Rourke
- Department of Electronic and Electrical Engineering, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Richard B Reilly
- School of Medicine, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|