1
|
Cai B, Sun D, Deng W, Jin Y, Zhao H, Xing D, Liu Y, Jin B. Mendelian randomization analysis and validation supports MEGF9 and MLLT11 as potential targets for the treatment of varicocele and male infertility. Front Endocrinol (Lausanne) 2024; 15:1416384. [PMID: 39391881 PMCID: PMC11464449 DOI: 10.3389/fendo.2024.1416384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Objective A growing body of research suggests a link between varicocele and male infertility (MI). However, current evidence is mainly based on retrospective studies, which are prone to interference from confounding factors and cannot establish causal relationships. Mendelian randomization (MR) studies on the causal relationship between varicocele and MI are very limited. Therefore, this study conducted a two-sample MR study to elucidate the causal effect between the two. Methods Download the data set GSE216907 from the GEO database, and use R software to screen differential genes in normal and varicocele tissue samples. The drug targets of Bu Shen Huo Xue Prescription (BSHXP) were derived from the Herb database. All genetic datasets were obtained using publicly available summary statistics based on individuals of European ancestry from the IEU GWAS database. MR analysis was performed using MR Egger, weighted median (WM) and inverse variance weighted (IVW) methods to assess the causal relationship between exposure and outcome and to validate the findings by comprehensively evaluating the effects of pleiotropic effects and outliers. The renal vein constriction method was used to establish a pathological model of varicocele infertility. The drug was administered continuously for 60 days and the relevant indicators of the rats were observed. Results Obtain two therapeutic targets for varicocele through intersection analysis: MEGF9 and MLLT11, and were verified by molecular docking. MR analysis showed that MEGF9 was positively associated with MI (MR Egger, OR: 1.639, 95% CI: 1.124-2.391, P = 0.024; WM, OR: 1.235, 95% CI: 1.003-1.521, P = 0.047). MEGF9 is also positively associated with MI (IVW, OR: 1.35, 95% CI: 1.069-1.705, P = 0.012). Sensitivity analysis showed no heterogeneity and horizontal pleiotropy. The expression of MEGF9 and MLLT11 increased in the varicocele model group, while the expression decreased after treatment with low, medium, and high doses of BSHXP. In addition, the sperm number, motility, morphology, and fertility of rats in the model group were significantly lower than those in the control group (P<0.05). After BSHXP treatment, all indicators were significantly better than those of the model group (P<0.05). Conclusion In conclusion, this study indirectly supports that varicocele causes MI. BSHXP inhibiting MEGF9 and MLLT11 may become a potential therapeutic target for alleviating varicocele and MI.
Collapse
Affiliation(s)
- Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Weimin Deng
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hongle Zhao
- Department of Andrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Dong Xing
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Yuanyuan Liu
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Baig S, Nadaf J, Allache R, Le PU, Luo M, Djedid A, Nkili-Meyong A, Safisamghabadi M, Prat A, Antel J, Guiot MC, Petrecca K. Identity and nature of neural stem cells in the adult human subventricular zone. iScience 2024; 27:109342. [PMID: 38495819 PMCID: PMC10940989 DOI: 10.1016/j.isci.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.
Collapse
Affiliation(s)
- Salma Baig
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Redouane Allache
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Phuong U. Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Michael Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Annisa Djedid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Maryam Safisamghabadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Alex Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X0A9, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Marie-Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| |
Collapse
|
3
|
Proestling K, Husslein H, Hudson QJ, Witzmann-Stern M, Widmar B, Bagó-Horváth Z, Sandrieser L, Perricos A, Wenzl R, Yotova I. MLLT11 Regulates Endometrial Stroma Cell Adhesion, Proliferation and Survival in Ectopic Lesions of Women with Advanced Endometriosis. Int J Mol Sci 2023; 25:439. [PMID: 38203610 PMCID: PMC10778601 DOI: 10.3390/ijms25010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
MLLT11 is a gene implicated in cell differentiation and the development and progression of human cancers, but whose role in the pathogenesis of endometriosis is still unknown. Using quantitative RT-PCR and immunohistochemistry, we analyzed 37 women with and 33 women without endometriosis for differences in MLLT11 expression. We found that MLLT11 is reduced in the ectopic stroma cells of women with advanced stage endometriosis compared to women without endometriosis. MLLT11 knockdown in control stroma cells resulted in the downregulation of their proliferation accompanied by G1 cell arrest and an increase in the expression of p21 and p27. Furthermore, the knockdown of MLLT11 was associated with increased apoptosis resistance to camptothecin associated with changes in BCL2/BAX signaling. Finally, MLLT11 siRNA knockdown in the control primary stroma cells led to an increase in cell adhesion associated with the transcriptional activation of ACTA2 and TGFB2. We found that the cellular phenotype of MLLT11 knockdown cells resembled the phenotype of the primary endometriosis stroma cells of the lesion, where the levels of MLLT11 are significantly reduced compared to the eutopic stroma cells of women without the disease. Overall, our results indicate that MLLT11 may be a new clinically relevant player in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Katharina Proestling
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Quanah James Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Matthias Witzmann-Stern
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Barbara Widmar
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Zsuzsanna Bagó-Horváth
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria;
| | - Lejla Sandrieser
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Alexandra Perricos
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - René Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| |
Collapse
|
4
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
5
|
Chen L, Xiong Z, Zhao H, Teng C, Liu H, Huang Q, Wanggou S, Li X. Identification of the novel prognostic biomarker, MLLT11, reveals its relationship with immune checkpoint markers in glioma. Front Oncol 2022; 12:889351. [PMID: 36033495 PMCID: PMC9414891 DOI: 10.3389/fonc.2022.889351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
AimThis study aimed to explore the expression pattern of MLLT11 under different pathological features, evaluate its prognostic value for glioma patients, reveal the relationship between MLLT11 mRNA expression and immune cell infiltration in the tumor microenvironment (TME), and provide more evidence for the molecular diagnosis of glioma and immunotherapy.MethodsUsing large-scale bioinformatic approach and RNA sequencing (RNA-seq) data from public databases The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and The Gene Expression Omnibus (GEO)), we investigated the relationship between MLLT11 mRNA levels and pathologic characteristics. The distribution in the different subtypes was observed based on Verhaak bulk and Neftel single-cell classification. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for bioinformatic analysis. Kaplan–Meier survival analysis and Cox regression analysis were used for survival analysis. Correlation analyses were performed between MLLT11 expression and 22 immune cells and immune checkpoints in the TME.ResultsWe found that MLLT11 expression is decreased in high-grade glioma tissues; we further verified this result by RTPCR, Western blotting, and immunohistochemistry using our clinical samples. According to the Verhaak classification, high MLLT11 expression is mostly clustered in pro-neutral (PN) and neutral (NE) subtypes, while in the Neftel classification, MLLT11 mainly clustered in neural progenitor-like (NPC-like) neoplastic cells. Survival analysis revealed that low levels of MLLT11 expression are associated with a poorer prognosis; MLLT11 was identified as an independent prognostic factor in multivariate Cox regression analyses. Functional enrichment analyses of MLLT11 with correlated expression indicated that low MLLT11 expression is associated with the biological process related to the extracellular matrix, and the high expression group is related to the synaptic structure. Correlation analyses suggest that declined MLLT11 expression is associated with increased macrophage infiltration in glioma, especially M2 macrophage, and verified by RTPCR, Western blotting, and immunohistochemistry using our clinical glioma samples. MLLT11 had a highly negative correlation with immune checkpoint inhibitor (ICI) genes including PDCD1, PD-L1, TIM3(HAVCR2), and PD‐L2 (PDCD1LG2).ConclusionMLLT11 plays a crucial role in the progression of glioma and has the potential to be a new prognostic marker for glioma.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siyi Wanggou, ; Xuejun Li,
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siyi Wanggou, ; Xuejun Li,
| |
Collapse
|