1
|
Zhu S, Oh YJ, Trepka EB, Chen X, Moore T. Dependence of Contextual Modulation in Macaque V1 on Interlaminar Signal Flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590176. [PMID: 38659877 PMCID: PMC11042257 DOI: 10.1101/2024.04.18.590176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In visual cortex, neural correlates of subjective perception can be generated by modulation of activity from beyond the classical receptive field (CRF). In macaque V1, activity generated by nonclassical receptive field (nCRF) stimulation involves different intracortical circuitry than activity generated by CRF stimulation, suggesting that interactions between neurons across V1 layers differ under CRF and nCRF stimulus conditions. Using Neuropixels probes, we measured border ownership modulation within large, local populations of V1 neurons. We found that neurons in single columns preferred the same side of objects located outside of the CRF. In addition, we found that cross-correlations between pairs of neurons situated across feedback/horizontal and input layers differed between CRF and nCRF stimulation. Furthermore, independent of the comparison with CRF stimulation, we observed that the magnitude of border ownership modulation increased with the proportion of information flow from feedback/horizontal layers to input layers. These results demonstrate that the flow of signals between layers covaries with the degree to which neurons integrate information from beyond the CRF.
Collapse
|
2
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
3
|
MIYASHITA Y. Operating principles of the cerebral cortex as a six-layered network in primates: beyond the classic canonical circuit model. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:93-111. [PMID: 35283409 PMCID: PMC8948418 DOI: 10.2183/pjab.98.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The cerebral cortex performs its computations with many six-layered fundamental units, collectively spreading along the cortical sheet. What is the local network structure and the operating dynamics of such a fundamental unit? Previous investigations of primary sensory areas revealed a classic "canonical" circuit model, leading to an expectation of similar circuit organization and dynamics throughout the cortex. This review clarifies the different circuit dynamics at play in the higher association cortex of primates that implements computation for high-level cognition such as memory and attention. Instead of feedforward processing of response selectivity through Layers 4 to 2/3 that the classic canonical circuit stipulates, memory recall in primates occurs in Layer 5/6 with local backward projection to Layer 2/3, after which the retrieved information is sent back from Layer 6 to lower-level cortical areas for further retrieval of nested associations of target attributes. In this review, a novel "dynamic multimode module (D3M)" in the primate association cortex is proposed, as a new "canonical" circuit model performing this operation.
Collapse
Affiliation(s)
- Yasushi MIYASHITA
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
- Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Tauste Campo A. Inferring neural information flow from spiking data. Comput Struct Biotechnol J 2020; 18:2699-2708. [PMID: 33101608 PMCID: PMC7548302 DOI: 10.1016/j.csbj.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
The brain can be regarded as an information processing system in which neurons store and propagate information about external stimuli and internal processes. Therefore, estimating interactions between neural activity at the cellular scale has significant implications in understanding how neuronal circuits encode and communicate information across brain areas to generate behavior. While the number of simultaneously recorded neurons is growing exponentially, current methods relying only on pairwise statistical dependencies still suffer from a number of conceptual and technical challenges that preclude experimental breakthroughs describing neural information flows. In this review, we examine the evolution of the field over the years, starting from descriptive statistics to model-based and model-free approaches. Then, we discuss in detail the Granger Causality framework, which includes many popular state-of-the-art methods and we highlight some of its limitations from a conceptual and practical estimation perspective. Finally, we discuss directions for future research, including the development of theoretical information flow models and the use of dimensionality reduction techniques to extract relevant interactions from large-scale recording datasets.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Centre for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas 25, 08018 Barcelona, Spain
| |
Collapse
|
5
|
Chen R, Wang F, Liang H, Li W. Synergistic Processing of Visual Contours across Cortical Layers in V1 and V2. Neuron 2017; 96:1388-1402.e4. [DOI: 10.1016/j.neuron.2017.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/25/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
6
|
Zhang Y, Zhang Y, Yu H, Yang Y, Li W, Qian Z. Theta-gamma coupling in hippocampus during working memory deficits induced by low frequency electromagnetic field exposure. Physiol Behav 2017; 179:135-142. [DOI: 10.1016/j.physbeh.2017.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022]
|
7
|
Liu T, Bai W, Wang J, Tian X. An aberrant link between gamma oscillation and functional connectivity in Aβ1–42-mediated memory deficits in rats. Behav Brain Res 2016; 297:51-8. [DOI: 10.1016/j.bbr.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 02/02/2023]
|
8
|
Top-Down Regulation of Laminar Circuit via Inter-Area Signal for Successful Object Memory Recall in Monkey Temporal Cortex. Neuron 2015; 86:840-52. [DOI: 10.1016/j.neuron.2015.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/07/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022]
|
9
|
Wei J, Bai W, Liu T, Tian X. Functional connectivity changes during a working memory task in rat via NMF analysis. Front Behav Neurosci 2015; 9:2. [PMID: 25688192 PMCID: PMC4311635 DOI: 10.3389/fnbeh.2015.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/02/2015] [Indexed: 02/01/2023] Open
Abstract
Working memory (WM) is necessary in higher cognition. The brain as a complex network is formed by interconnections among neurons. Connectivity results in neural dynamics to support cognition. The first aim is to investigate connectivity dynamics in medial prefrontal cortex (mPFC) networks during WM. As brain neural activity is sparse, the second aim is to find the intrinsic connectivity property in a feature space. Using multi-channel electrode recording techniques, spikes were simultaneously obtained from mPFC of rats that performed a Y-maze WM task. Continuous time series converted from spikes were embedded in a low-dimensional space by non-negative matrix factorization (NMF). mPFC network in original space was constructed by measuring connections among neurons. And the same network in NMF space was constructed by computing connectivity values between the extracted NMF components. Causal density (Cd) and global efficiency (E) were estimated to present the network property. The results showed that Cd and E significantly peaked in the interval right before the maze choice point in correct trials. However, the increase did not emerge in error trials. Additionally, Cd and E in two spaces displayed similar trends in correct trials. The difference was that the measures in NMF space were significantly greater than those in original space. Our findings indicated that the anticipatory changes in mPFC networks may have an effect on future WM behavioral choices. Moreover, the NMF analysis achieves a better characterization for a brain network.
Collapse
Affiliation(s)
- Jing Wei
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China
| | - Xin Tian
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China ; Research Center of Basic Medicine, Tianjin Medical University Tianjin, China
| |
Collapse
|
10
|
Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 2014; 157:845-57. [PMID: 24768692 DOI: 10.1016/j.cell.2014.04.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Neuronal oscillations have been hypothesized to play an important role in cognition and its ensuing behavior, but evidence that links a specific neuronal oscillation to a discrete cognitive event is largely lacking. We measured neuronal activity in the entorhinal-hippocampal circuit while mice performed a reward-based spatial working memory task. During the memory retention period, a transient burst of high gamma synchronization preceded an animal's correct choice in both prospective planning and retrospective mistake correction, but not an animal's incorrect choice. Optogenetic inhibition of the circuit targeted to the choice point area resulted in a coordinated reduction in both high gamma synchrony and correct execution of a working-memory-guided behavior. These findings suggest that transient high gamma synchrony contributes to the successful execution of spatial working memory. Furthermore, our data are consistent with an association between transient high gamma synchrony and explicit awareness of the working memory content.
Collapse
Affiliation(s)
- Jun Yamamoto
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Junghyup Suh
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daigo Takeuchi
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Hirabayashi T, Miyashita Y. Computational principles of microcircuits for visual object processing in the macaque temporal cortex. Trends Neurosci 2014; 37:178-87. [DOI: 10.1016/j.tins.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 01/04/2023]
|
12
|
Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y. Microcircuits for Hierarchical Elaboration of Object Coding Across Primate Temporal Areas. Science 2013; 341:191-5. [DOI: 10.1126/science.1236927] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Functional Microcircuit Recruited during Retrieval of Object Association Memory in Monkey Perirhinal Cortex. Neuron 2013; 77:192-203. [DOI: 10.1016/j.neuron.2012.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
|
14
|
Tamura K, Ohashi Y, Tsubota T, Takeuchi D, Hirabayashi T, Yaguchi M, Matsuyama M, Sekine T, Miyashita Y. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. J Neurosci Methods 2012; 211:49-57. [PMID: 22971353 DOI: 10.1016/j.jneumeth.2012.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023]
Abstract
The optogenetic approach to primate brain circuitry has unparalleled potential for uncovering genetically and temporally resolved neuronal mechanisms of higher brain functions. In order to optogenetically investigate the large and complex primate brain, an optical-/electrical probe, or "optrode", must be inserted deeply, which requires the optrode to be not only long and stiff, but also sharp and smooth to reduce possible tissue damage. This study presents a tungsten microelectrode-based optrode that encloses optical fibers within its insulation glass. Optical fibers and a tungsten wire were tightly bound to each other and integrally coated with a smooth, thin layer of glass. This design satisfied the structural requirements for use in deep brain structures. The performance of the optrode was then examined in the thalamus of the rat and macaque monkeys which were injected with lentiviral vectors carrying the channelrhodopsin-2-enhanced yellow fluorescent protein (ChR2-EYFP) transgene. With fluorescence measurements via the optical fiber, ChR2-EYFP expression was detected clearly in vivo, which was confirmed by histological analysis in the rat. With photostimulation and extracellular recording, photo-responsive single-unit activities were isolated in the monkeys. The depth distribution of these units and the peak of the EYFP fluorescence profile overlapped consistently with each other. Thus, by developing a new probe, optogenetic methodology was successfully applied to a primate subcortical structure. This smooth glass-coated optrode is a promising tool for chronic in vivo experiments with various research targets including deep brain structures in behaving monkeys.
Collapse
Affiliation(s)
- Keita Tamura
- Department of Physiology, The University of Tokyo School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rabinovich MI, Afraimovich VS, Bick C, Varona P. Information flow dynamics in the brain. Phys Life Rev 2012; 9:51-73. [DOI: 10.1016/j.plrev.2011.11.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 11/26/2022]
|
16
|
Kasahara H, Takeuchi D, Takeda M, Hirabayashi T. Submodality-dependent spatial organization of neurons coding for visual long-term memory in macaque inferior temporal cortex. Brain Res 2011; 1423:30-40. [DOI: 10.1016/j.brainres.2011.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/30/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|
17
|
Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y. Reversal of Interlaminar Signal Between Sensory and Memory Processing in Monkey Temporal Cortex. Science 2011; 331:1443-7. [DOI: 10.1126/science.1199967] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|