1
|
Parker D, Muhkopadyay S, Sivaraman V. Alcohol activates cannabinoid receptor 1 and 2 in a model of pathogen induced pulmonary inflammation. Toxicol Lett 2024; 401:24-34. [PMID: 39251147 PMCID: PMC11527581 DOI: 10.1016/j.toxlet.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Alcohol use disorder (AUD) is defined as patterns of alcohol misuse and affects over 30 million people in the US. AUD is a systemic disease with the epidemiology of acute lung injury and excessive alcohol use established in the literature. However, the distinct mechanisms by which alcohol induces the risk of pulmonary inflammation are less clear. A compelling body of evidence shows that cannabinoid receptors (CB1R and CB2R) play a relevant role in AUD. For this study, we investigated the role of CBR signaling in pulmonary immune activation. Using a human macrophage cell line, we evaluated the expression of CBR1 and CBR2 after cells were exposed to EtOH, +/- cannabinoid agonists and antagonists by flow cytometry. We also evaluated the expression of cannabinoid receptors from the lungs of adolescent mice exposed to acute binge EtOH +/- cannabinoid agonists and antagonists at both resting state and after microbial challenge via western blot, rt-PCR, cytokine analysis, and histology. Our results suggest that EtOH exposure modulates the expression of CBR1 and CBR2. Second, EtOH may contribute to the release of DAMPs and other proinflammatory cytokines, Finally, microbial challenge induces pulmonary inflammation in acute binge EtOH-exposed mice, and this observed immune activation may be CBR-dependent. We have shown that adolescent binge drinking primes the lung to subsequent microbial infection in adulthood and this response can be mitigated with cannabinoid antagonists. These novel findings may provide a framework for developing potential novel therapeutics in AUD research.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Humans
- Ethanol/toxicity
- Lung/drug effects
- Lung/metabolism
- Lung/immunology
- Lung/pathology
- Mice, Inbred C57BL
- Pneumonia/chemically induced
- Pneumonia/metabolism
- Male
- Mice
- Cytokines/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Disease Models, Animal
- Cannabinoid Receptor Agonists/pharmacology
- Binge Drinking/complications
- Binge Drinking/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- De'Jana Parker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Somnath Muhkopadyay
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
2
|
Blednov YA, Da Costa A, Mason S, Mayfield J, Moss SJ, Messing RO. Apremilast-induced increases in acute ethanol intoxication and decreases in ethanol drinking in mice involve PKA phosphorylation of GABA A β3 subunits. Neuropharmacology 2022; 220:109255. [PMID: 36152689 PMCID: PMC9810330 DOI: 10.1016/j.neuropharm.2022.109255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 01/05/2023]
Abstract
We previously showed that apremilast, an FDA-approved PDE4 inhibitor, selectively alters behavioral responses to ethanol and certain GABAergic drugs in a PKA-dependent manner in C57BL6/J mice. Here, we investigated if PKA phosphorylation of β3 GABAA receptor subunits is involved in apremilast regulation of ethanol, propofol, or diazepam responses. Apremilast prolonged rotarod ataxia and loss of the righting reflex by ethanol and propofol in wild-type mice, but not in β3-S408A/S409A knock-in mice. In contrast, apremilast hastened recovery from the ataxic and sedative effects of diazepam in both genotypes. These findings suggest that apremilast modulation of ethanol and propofol behaviors in wild-type mice is mediated by β3 subunit phosphorylation, whereas its actions on diazepam responses involve a different mechanism. The PKA inhibitor H-89 prevented apremilast modulation of ethanol-induced ataxia. Apremilast sensitized wild-type males to ethanol-induced ataxia and decreased acute functional tolerance (AFT) in females but had no effect in β3-S408A/S409A mice of either sex. These results could not be attributed to genotype differences in blood ethanol clearance. There were also no baseline genotype differences in ethanol consumption and preference in two different voluntary drinking procedures. However, the ability of apremilast to reduce ethanol consumption was diminished in β3-S408A/S409A mice. Our results provide strong evidence that PKA-dependent phosphorylation of β3 GABAA receptor subunits is an important mechanism by which apremilast increases acute sensitivity to alcohol, decreases AFT, and decreases ethanol drinking.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Letsinger AC, Gu Z, Yakel JL. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci 2022; 45:145-157. [PMID: 34916082 PMCID: PMC8914277 DOI: 10.1016/j.tins.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cholinergic innervation of the hippocampus uses the neurotransmitter acetylcholine (ACh) to coordinate neuronal circuit activity while simultaneously influencing the function of non-neuronal cell types. The α7 nicotinic ACh receptor (nAChR) subtype is highly expressed throughout the hippocampus, has the highest calcium permeability compared with other subtypes of nAChRs, and is of high therapeutic interest due to its association with a variety of neurological disorders and neurodegenerative diseases. In this review, we synthesize research describing α7 nAChR properties, function, and relationship to cognitive dysfunction within the hippocampal circuit and highlight approaches to help improve therapeutic development.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA,Corresponding Author,
| |
Collapse
|
4
|
Abburi C, McDaid J. Ethanol interaction with α3β4 nicotinic acetylcholine receptors in neurons of the laterodorsal tegmentum. Alcohol Clin Exp Res 2021; 45:2495-2505. [PMID: 34625982 DOI: 10.1111/acer.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) play a key role in the rewarding effects of ethanol (EtOH), and while several nAChR subtypes have been implicated, attention has recently shifted to a role for the α3β4 nAChR. The laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic nucleus that sends excitatory projections to the ventral tegmental area, is an Integral part of the brain reward pathway. Here we investigate a potential role for LDTg α3β4 nAChRs in EtOH self-administration and reward. METHODS Sprague-Dawley rats were given ad libitum access to a 20% EtOH solution, as part of a two-bottle choice paradigm. Approximately 1 week after removal of EtOH access, we measured LDTg α3β4 nAChR current responses to focal application of acetylcholine (ACh), using whole-cell patch clamp electrophysiology recordings in acute brain slices. In addition, we used whole-cell electrophysiology to assess the acute effects of EtOH on the sensitivity of LDTg α3β4 nAChRs. RESULTS Focal application of ACh onto LDTg neurons resulted in large α3β4 nAChR-mediated inward currents, the magnitude of which showed a positive correlation with levels of EtOH self-administration. In addition, using brain slices taken from EtOH-naïve rats, bath application of EtOH resulted in a moderate potentiation of LDTg α3β4 nAChR sensitivity. CONCLUSIONS Using a rat model, increased α3β4 nAChR function was associated with greater EtOH self-administration, with α3β4 nAChR function also acutely potentiated by EtOH. Assuming that similar findings apply to humans, the α3β4 nAChR could be a therapeutic target in the treatment of EtOH use disorder.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| |
Collapse
|
5
|
Nunes-Freitas AL, Soni N, Polli FS, Kohlmeier KA. Prenatal exposure to nicotine in mice is associated with alterations in development and cellular and synaptic effects of alcohol in a brainstem arousal nucleus. Neurotoxicol Teratol 2021; 87:106980. [PMID: 33838245 DOI: 10.1016/j.ntt.2021.106980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023]
Abstract
Using drugs of abuse while pregnant has tremendous negative consequences for the offspring, including an enhanced risk for substance use disorder (SUD). This vulnerability suggests that gestational exposure to drugs alters the developmental trajectory of neurons important in SUD processes, which could lead to later life changes in responsiveness to motivationally salient stimuli. The laterodorsal tegmentum (LDT) gates the behaviorally relevant firing pattern signaling stimuli saliency in mesoaccumbal circuits. Accordingly, any alterations in LDT functionality could alter output, and play a role in negative outcomes on motivated behavior associated with early-life nicotine exposure. Therefore, we investigated whether prenatal exposure to nicotine (PNE), which is a known teratogen, altered responsiveness of LDT neurons to alcohol by conducting electrophysiology in brain slices. Alcohol induced an outward current in control LDT cells, which was not seen in PNE LDT neurons. The frequency of mEPSCs was significantly decreased by alcohol in LDT PNE cells and accompanied by a decrease in action potential frequency, which were actions not seen in controls. Changes in baseline activity of PNE LDT cells were also observed. In summary, PNE LDT neurons showed alterations in baseline activity and membrane and synaptic responses to postnatal exposures to alcohol. The differences in PNE baseline activity and alcohol responses likely lead to differential output from the LDT to mesoaccumbal targets that could play a role in biasing coding of relevant stimuli, which could participate in the enhanced proclivity for development of SUD in those exposed during gestation to nicotine.
Collapse
Affiliation(s)
- André Luiz Nunes-Freitas
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Neeraj Soni
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Filip S Polli
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
6
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Sizer SE, Parrish BC, McCool BA. Chronic Ethanol Exposure Potentiates Cholinergic Neurotransmission in the Basolateral Amygdala. Neuroscience 2020; 455:165-176. [PMID: 33385490 DOI: 10.1016/j.neuroscience.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023]
Abstract
Chronic intermittent ethanol (CIE) exposure dysregulates glutamatergic and GABAergic neurotransmission, facilitating basolateral amygdala (BLA) pyramidal neuron hyperexcitability and the expression of anxiety during withdrawal. It is unknown whether ethanol-induced alterations in nucleus basalis magnocellularis (NBM) cholinergic projections to the BLA mediate anxiety-related behaviors through direct modulation of GABA and glutamate afferents. Following 10 days of CIE exposure and 24 h of withdrawal, we recorded GABAergic and glutamatergic synaptic responses in BLA pyramidal neurons with electrophysiology, assessed total protein expression of cholinergic markers, and quantified acetylcholine and choline concentrations using a colorimetric assay. We measured α7 nicotinic acetylcholine receptor (nAChR) dependent modulation of presynaptic function at distinct inputs in AIR- and CIE-exposed BLA coronal slices as a functional read-out of cholinergic neurotransmission. CIE/withdrawal upregulates the endogenous activity of α7 nAChRs, facilitating release at both GABAergic' local' interneuron and glutamatergic synaptic responses to stria terminalis (ST) stimulation, with no effect at GABAergic lateral paracapsular cells (LPCs). CIE caused a three-fold increase in BLA acetylcholine concentration, with no changes in α7 nAChR or cholinergic marker expression. These data illustrate that α7 nAChR-dependent changes in presynaptic function serve as a proxy for CIE-dependent alterations in synaptic acetylcholine levels. Thus, cholinergic projections appear to mediate CIE-induced alterations at GABA/glutamate inputs.
Collapse
Affiliation(s)
- Sarah E Sizer
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| | - Brian A McCool
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| |
Collapse
|
8
|
McCool BA, McGinnis MM. Adolescent Vulnerability to Alcohol Use Disorder: Neurophysiological Mechanisms from Preclinical Studies. Handb Exp Pharmacol 2020; 258:421-442. [PMID: 31595414 DOI: 10.1007/164_2019_296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent alcohol use in human populations dramatically increases the likelihood of adult alcohol use disorder. This adolescent vulnerability is recapitulated in preclinical models which provide important opportunities to understand basic neurobiological mechanisms. We provide here an overview of GABAergic and glutamatergic neurotransmission and our current understanding of the sensitivity of these systems to adolescent ethanol exposure. As a whole, the preclinical literature suggests that adolescent vulnerability may be directly related to region-specific neurobiological processes that continue to develop during adolescence. These processes include the activity of intrinsic circuits within diverse brain regions (primarily represented by GABAergic neurotransmission) and activity-dependent regulation of synaptic strength at glutamatergic synapses. Furthermore, GABAergic and glutamatergic neurotransmission within regions/circuits that regulate cognitive function, emotion, and their integration appears to be the most vulnerable to adolescent ethanol exposure. Finally, using documented behavioral differences between adolescents and adults with respect to acute ethanol, we highlight additional circuits and regions for future study.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Montaño-Velázquez BB, Benavides Méndez JC, García-Vázquez FJ, Conde-Vázquez E, Sánchez-Uribe M, Taboada-Murrieta CR, Jáuregui-Renaud K. Influence of Tobacco Smoke Exposure on the Protein Expression of α7 and α4 Nicotinic Acetylcholine Receptors in Squamous Cell Carcinoma Tumors of the Upper Aerodigestive Tract (Out of the Larynx). SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2018; 12:1178221818801316. [PMID: 31068752 PMCID: PMC6495442 DOI: 10.1177/1178221818801316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Purpose: To assess protein expression of α7 and α4 nicotinic acetylcholine receptors (nAChR) subtypes in squamous cell carcinoma of the upper aerodigestive track (out of the larynx) according to tobacco smoke exposure, considering the general characteristics of the patients. Methods: The α7 and α4 nAChR subtypes were assessed by immunohistochemistry in tumor samples from 33 patients with novel diagnosis of squamous cell carcinoma of the upper aerodigestive tract (out of the larynx). Results: Current smokers were middle-age men with alcohol consumption, whereas elderly women with no alcohol consumption prevailed among nonsmokers. Expression of α4 nAChR was high in all groups, with an influence of alcohol use, although expression of α7 nAChR was low in current smokers with alcohol use. Expression of α4 with no expression of α7 nAChR was associated with advanced disease. Conclusions: Squamous cell carcinoma tumors of the upper aerodigestive tract (out of the larynx) may show desensitization of α4 nAChR. Advanced disease at diagnosis might be associated with desensitization of α4 with decrease in α7 nAChR.
Collapse
Affiliation(s)
- Bertha B Montaño-Velázquez
- Servicio de Otorrinolaringología, CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Juan C Benavides Méndez
- Servicio de Otorrinolaringología, CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - Ernesto Conde-Vázquez
- Servicio de Otorrinolaringología, CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Magdalena Sánchez-Uribe
- Servicio de Anatomía Patológica, HE CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Cecilia R Taboada-Murrieta
- Servicio de Anatomía Patológica, HE CMN La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Kathrine Jáuregui-Renaud
- Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
10
|
Dumont G, Maex R, Gutkin B. Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Klenowski PM, Tapper AR. Molecular, Neuronal, and Behavioral Effects of Ethanol and Nicotine Interactions. Handb Exp Pharmacol 2018; 248:187-212. [PMID: 29423839 DOI: 10.1007/164_2017_89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Cui C, Koob GF. Titrating Tipsy Targets: The Neurobiology of Low-Dose Alcohol. Trends Pharmacol Sci 2017; 38:556-568. [PMID: 28372826 DOI: 10.1016/j.tips.2017.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Limited attention has been given to our understanding of how the brain responds to low-dose alcohol (ethanol) and what molecular and cellular targets mediate these effects. Even at concentrations lower than 10mM (0.046 g% blood alcohol concentration, BAC), below the legal driving limit in the USA (BAC 0.08 g%), alcohol impacts brain function and behavior. Understanding what molecular and cellular targets mediate the initial effects of alcohol and subsequent neuroplasticity could provide a better understanding of vulnerability or resilience to developing alcohol use disorders. We review here what is known about the neurobiology of low-dose alcohol, provide insights into potential molecular targets, and discuss future directions and challenges in further defining targets of low-dose alcohol at the molecular, cellular, and circuitry levels.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|