1
|
Calabrese RL, Marder E. Degenerate neuronal and circuit mechanisms important for generating rhythmic motor patterns. Physiol Rev 2025; 105:95-135. [PMID: 39453990 DOI: 10.1152/physrev.00003.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/27/2024] Open
Abstract
In 1996, we published a review article (Marder E, Calabrese RL. Physiol Rev 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996. Here, we focus on newer studies that reveal ambiguities that complicate understanding circuit dynamics, despite the enormous technical advances of the recent past. In particular, we highlight recent studies of animal-to-animal variability and our understanding that circuit rhythmicity may be supported by multiple state-dependent mechanisms within the same animal and that robustness and resilience in the face of perturbation may depend critically on the presence of modulators and degenerate circuit mechanisms. Additionally, we highlight the use of computational models to ask whether there are generalizable principles about circuit motifs that can be found across rhythmic motor systems in different animal species.
Collapse
Affiliation(s)
| | - Eve Marder
- Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
2
|
Ellingson PJ, Shams YO, Parker JR, Calabrese RL, Cymbalyuk GS. Multistability of bursting rhythms in a half-center oscillator and the protective effects of synaptic inhibition. Front Cell Neurosci 2024; 18:1395026. [PMID: 39355175 PMCID: PMC11442309 DOI: 10.3389/fncel.2024.1395026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/08/2024] [Indexed: 10/03/2024] Open
Abstract
For animals to meet environmental challenges, the activity patterns of specialized oscillatory neural circuits, central pattern generators (CPGs), controlling rhythmic movements like breathing and locomotion, are adjusted by neuromodulation. As a representative example, the leech heartbeat is controlled by a CPG driven by two pairs of mutually inhibitory interneurons, heart interneuron (HN) half-center oscillators (HCO). Experiments and modeling indicate that neuromodulation of HCO navigates this CPG between dysfunctional regimes by employing a co-regulating inverted relation; reducing Na+/K+ pump current and increasing hyperpolarization-activated (h-) current. Simply reducing pump activity or increasing h-current leads to either seizure-like bursting or an asymmetric bursting dysfunctional regime, respectively. Here, we demonstrate through modeling that, alongside this coregulation path, a new bursting regime emerges. Both regimes fulfill the criteria for functional bursting activity. Although the cycle periods and burst durations of these patterns are roughly the same, the new one exhibits an intra-burst spike frequency that is twice as high as the other. This finding suggests that neuromodulation could introduce additional functional regimes with higher spike frequency, and thus more effective synaptic transmission to motor neurons. We found that this new regime co-exists with the original bursting. The HCO can be switched between them by a short pulse of excitatory or inhibitory conductance. In this domain of coexisting functional patterns, an isolated cell model exhibits only one regime, a severely dysfunctional plateau-containing, seizure-like activity. This aligns with widely reported notion that deficiency of inhibition can cause seizures and other dysfunctional neural activities. We show that along the coregulation path of neuromodulation, the high excitability of the single HNs induced by myomodulin is harnessed by mutually inhibitory synaptic interactions of the HCO into the functional bursting pattern.
Collapse
Affiliation(s)
- Parker J. Ellingson
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Yousif O. Shams
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jessica R. Parker
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | | |
Collapse
|
3
|
Guan L, Gu H, Zhang X. Dynamics of antiphase bursting modulated by the inhibitory synaptic and hyperpolarization-activated cation currents. Front Comput Neurosci 2024; 18:1303925. [PMID: 38404510 PMCID: PMC10884300 DOI: 10.3389/fncom.2024.1303925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Antiphase bursting related to the rhythmic motor behavior exhibits complex dynamics modulated by the inhibitory synaptic current (Isyn), especially in the presence of the hyperpolarization-activated cation current (Ih). In the present paper, the dynamics of antiphase bursting modulated by the Ih and Isyn is studied in three aspects with a theoretical model. Firstly, the Isyn and the slow Ih with strong strength are the identified to be the necessary conditions for the antiphase bursting. The dependence of the antiphase bursting on the two currents is different for low (escape mode) and high (release mode) threshold voltages (Vth) of the inhibitory synapse. Secondly, more detailed co-regulations of the two currents to induce opposite changes of the bursting period are obtained. For the escape mode, increase of the Ih induces elevated membrane potential of the silence inhibited by a strong Isyn and shortened silence duration to go beyond Vth, resulting in reduced bursting period. For the release mode, increase of the Ih induces elevated tough value of the former part of the burst modulated by a nearly zero Isyn and lengthen burst duration to fall below Vth, resulting in prolonged bursting period. Finally, the fast-slow dynamics of the antiphase bursting are acquired. Using one-and two-parameter bifurcations of the fast subsystem of a single neuron, the burst of the antiphase bursting is related to the stable limit cycle, and the silence modulated by a strong Isyn to the stable equilibrium to a certain extent. The Ih mainly modulates the dynamics within the burst and quiescent state. Furthermore, with the fast subsystem of the coupled neurons, the silence is associated with the unstable equilibrium point. The results present theoretical explanations to the changes in the bursting period and fast-slow dynamics of the antiphase bursting modulated by the Isyn and Ih, which is helpful for understanding the antiphase bursting and modulating rhythmic motor patterns.
Collapse
Affiliation(s)
- Linan Guan
- School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - Xinjing Zhang
- School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China
| |
Collapse
|
4
|
Erazo-Toscano R, Fomenko M, Core S, Calabrese RL, Cymbalyuk G. Bursting Dynamics Based on the Persistent Na + and Na +/K + Pump Currents: A Dynamic Clamp Approach. eNeuro 2023; 10:ENEURO.0331-22.2023. [PMID: 37433684 PMCID: PMC10444573 DOI: 10.1523/eneuro.0331-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
Life-supporting rhythmic motor functions like heart-beating in invertebrates and breathing in vertebrates require an indefatigable generation of a robust rhythm by specialized oscillatory circuits, central pattern generators (CPGs). These CPGs should be sufficiently flexible to adjust to environmental changes and behavioral goals. Continuous self-sustained operation of bursting neurons requires intracellular Na+ concentration to remain in a functional range and to have checks and balances of the Na+ fluxes met on a cycle-to-cycle basis during bursting. We hypothesize that at a high excitability state, the interaction of the Na+/K+ pump current, Ipump, and persistent Na+ current, INaP, produces a mechanism supporting functional bursting. INaP is a low voltage-activated inward current that initiates and supports the bursting phase. This current does not inactivate and is a significant source of Na+ influx. Ipump is an outward current activated by [Na+]i and is the major source of Na+ efflux. Both currents are active and counteract each other between and during bursts. We apply a combination of electrophysiology, computational modeling, and dynamic clamp to investigate the role of Ipump and INaP in the leech heartbeat CPG interneurons (HN neurons). Applying dynamic clamp to introduce additional Ipump and INaP into the dynamics of living synaptically isolated HN neurons in real time, we show that their joint increase produces transition into a new bursting regime characterized by higher spike frequency and larger amplitude of the membrane potential oscillations. Further increase of Ipump speeds up this rhythm by shortening burst duration (BD) and interburst interval (IBI).
Collapse
Affiliation(s)
- Ricardo Erazo-Toscano
- Neuroscience Institute, Georgia State University, Atlanta, 30302 GA
- Department of Biology, Emory University, Atlanta, 30322 GA
| | - Mykhailo Fomenko
- Neuroscience Institute, Georgia State University, Atlanta, 30302 GA
| | - Samuel Core
- Neuroscience Institute, Georgia State University, Atlanta, 30302 GA
| | | | | |
Collapse
|
5
|
Megwa OF, Pascual LM, Günay C, Pulver SR, Prinz AA. Temporal dynamics of Na/K pump mediated memory traces: insights from conductance-based models of Drosophila neurons. Front Neurosci 2023; 17:1154549. [PMID: 37284663 PMCID: PMC10239822 DOI: 10.3389/fnins.2023.1154549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023] Open
Abstract
Sodium potassium ATPases (Na/K pumps) mediate long-lasting, dynamic cellular memories that can last tens of seconds. The mechanisms controlling the dynamics of this type of cellular memory are not well understood and can be counterintuitive. Here, we use computational modeling to examine how Na/K pumps and the ion concentration dynamics they influence shape cellular excitability. In a Drosophila larval motor neuron model, we incorporate a Na/K pump, a dynamic intracellular Na+ concentration, and a dynamic Na+ reversal potential. We probe neuronal excitability with a variety of stimuli, including step currents, ramp currents, and zap currents, then monitor the sub- and suprathreshold voltage responses on a range of time scales. We find that the interactions of a Na+-dependent pump current with a dynamic Na+ concentration and reversal potential endow the neuron with rich response properties that are absent when the role of the pump is reduced to the maintenance of constant ion concentration gradients. In particular, these dynamic pump-Na+ interactions contribute to spike rate adaptation and result in long-lasting excitability changes after spiking and even after sub-threshold voltage fluctuations on multiple time scales. We further show that modulation of pump properties can profoundly alter a neuron's spontaneous activity and response to stimuli by providing a mechanism for bursting oscillations. Our work has implications for experimental studies and computational modeling of the role of Na/K pumps in neuronal activity, information processing in neural circuits, and the neural control of animal behavior.
Collapse
Affiliation(s)
- Obinna F. Megwa
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Cengiz Günay
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Astrid A. Prinz
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Snyder RR, Blitz DM. Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity. J Neurophysiol 2022; 128:1181-1198. [PMID: 36197020 PMCID: PMC9621714 DOI: 10.1152/jn.00337.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab (Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly1-SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly1-SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly1-SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties.NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity.
Collapse
Affiliation(s)
- Ryan R Snyder
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| |
Collapse
|
7
|
Marder E, Kedia S, Morozova EO. New insights from small rhythmic circuits. Curr Opin Neurobiol 2022; 76:102610. [PMID: 35986971 DOI: 10.1016/j.conb.2022.102610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Small rhythmic circuits, such as those found in invertebrates, have provided fundamental insights into how circuit dynamics depend on individual neuronal and synaptic properties. Degenerate circuits are those with different network parameters and similar behavior. New work on degenerate circuits and their modulation illustrates some of the rules that help maintain stable and robust circuit function despite environmental perturbations. Advances in neuropeptide isolation and identification provide enhanced understanding of the neuromodulation of circuits for behavior. The advent of molecular studies of mRNA expression provides new insight into animal-to-animal variability and the homeostatic regulation of excitability in neurons and networks.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Sonal Kedia
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA. https://twitter.com/Sonal_Kedia
| | - Ekaterina O Morozova
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
8
|
Städele C, Stein W. Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits. Front Cell Neurosci 2022; 16:849160. [PMID: 35418838 PMCID: PMC8996074 DOI: 10.3389/fncel.2022.849160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Acute temperature changes can disrupt neuronal activity and coordination with severe consequences for animal behavior and survival. Nonetheless, two rhythmic neuronal circuits in the crustacean stomatogastric ganglion (STG) and their coordination are maintained across a broad temperature range. However, it remains unclear how this temperature robustness is achieved. Here, we dissociate temperature effects on the rhythm generating circuits from those on upstream ganglia. We demonstrate that heat-activated factors extrinsic to the rhythm generators are essential to the slow gastric mill rhythm’s temperature robustness and contribute to the temperature response of the fast pyloric rhythm. The gastric mill rhythm crashed when its rhythm generator in the STG was heated. It was restored when upstream ganglia were heated and temperature-matched to the STG. This also increased the activity of the peptidergic modulatory projection neuron (MCN1), which innervates the gastric mill circuit. Correspondingly, MCN1’s neuropeptide transmitter stabilized the rhythm and maintained it over a broad temperature range. Extrinsic neuromodulation is thus essential for the oscillatory circuits in the STG and enables neural circuits to maintain function in temperature-compromised conditions. In contrast, integer coupling between pyloric and gastric mill rhythms was independent of whether extrinsic inputs and STG pattern generators were temperature-matched or not, demonstrating that the temperature robustness of the coupling is enabled by properties intrinsic to the rhythm generators. However, at near-crash temperature, integer coupling was maintained only in some animals while it was absent in others. This was true despite regular rhythmic activity in all animals, supporting that degenerate circuit properties result in idiosyncratic responses to environmental challenges.
Collapse
|
9
|
Abstract
Breathing is a critical, complex, and highly integrated behavior. Normal rhythmic breathing, also referred to as eupnea, is interspersed with different breathing related behaviors. Sighing is one of such behaviors, essential for maintaining effective gas exchange by preventing the gradual collapse of alveoli in the lungs, known as atelectasis. Critical for the generation of both sighing and eupneic breathing is a region of the medulla known as the preBötzinger Complex (preBötC). Efforts are underway to identify the cellular pathways that link sighing as well as sneezing, yawning, and hiccupping with other brain regions to better understand how they are integrated and regulated in the context of other behaviors including chemosensation, olfaction, and cognition. Unraveling these interactions may provide important insights into the diverse roles of these behaviors in the initiation of arousal, stimulation of vigilance, and the relay of certain behavioral states. This chapter focuses primarily on the function of the sigh, how it is locally generated within the preBötC, and what the functional implications are for a potential link between sighing and cognitive regulation. Furthermore, we discuss recent insights gained into the pathways and mechanisms that control yawning, sneezing, and hiccupping.
Collapse
|