1
|
Lu YY, Lin CY, Lu CC, Tsai HP, Wang WT, Zhang ZH, Wu CH. Bleomycin triggers chronic mechanical nociception by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals. Brain Res Bull 2024; 217:111081. [PMID: 39277019 DOI: 10.1016/j.brainresbull.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chia-Yang Lin
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chun-Ching Lu
- Department of Orthopaedics and Traumatology, National Yang Ming Chiao Tung University Hospital, Yilan 260006, Taiwan; Department of Orthopaedics, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wei-Ting Wang
- National Defense Medical Center, Department of Radiology, Tri-Service General Hospital, Taipei City 114202, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei 050700, PR China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Brazill JM, Shin D, Magee K, Majumdar A, Shen IR, Cavalli V, Scheller EL. Knockout of TSC2 in Nav1.8+ neurons predisposes to the onset of normal weight obesity. Mol Metab 2023; 68:101664. [PMID: 36586433 PMCID: PMC9841058 DOI: 10.1016/j.molmet.2022.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Obesity and nutrient oversupply increase mammalian target of rapamycin (mTOR) signaling in multiple cell types and organs, contributing to the onset of insulin resistance and complications of metabolic disease. However, it remains unclear when and where mTOR activation mediates these effects, limiting options for therapeutic intervention. The objective of this study was to isolate the role of constitutive mTOR activation in Nav1.8-expressing peripheral neurons in the onset of diet-induced obesity, bone loss, and metabolic disease. METHODS In humans, loss of function mutations in tuberous sclerosis complex 2 (TSC2) lead to maximal constitutive activation of mTOR. To mirror this in mice, we bred Nav1.8-Cre with TSC2fl/fl animals to conditionally delete TSC2 in Nav1.8-expressing neurons. Male and female mice were studied from 4- to 34-weeks of age and a subset of animals were fed a high-fat diet (HFD) for 24-weeks. Assays of metabolism, body composition, bone morphology, and behavior were performed. RESULTS By lineage tracing, Nav1.8-Cre targeted peripheral sensory neurons, a subpopulation of postganglionic sympathetics, and several regions of the brain. Conditional knockout of TSC2 in Nav1.8-expressing neurons (Nav1.8-TSC2KO) selectively upregulated neuronal mTORC1 signaling. Male, but not female, Nav1.8-TSC2KO mice had a 4-10% decrease in body size at baseline. When challenged with HFD, both male and female Nav1.8-TSC2KO mice resisted diet-induced gains in body mass. However, this did not protect against HFD-induced metabolic dysfunction and bone loss. In addition, despite not gaining weight, Nav1.8-TSC2KO mice fed HFD still developed high body fat, a unique phenotype previously referred to as 'normal weight obesity'. Nav1.8-TSC2KO mice also had signs of chronic itch, mild increases in anxiety-like behavior, and sex-specific alterations in HFD-induced fat distribution that led to enhanced visceral obesity in males and preferential deposition of subcutaneous fat in females. CONCLUSIONS Knockout of TSC2 in Nav1.8+ neurons increases itch- and anxiety-like behaviors and substantially modifies fat storage and metabolic responses to HFD. Though this prevents HFD-induced weight gain, it masks depot-specific fat expansion and persistent detrimental effects on metabolic health and peripheral organs such as bone, mimicking the 'normal weight obesity' phenotype that is of growing concern. This supports a mechanism by which increased neuronal mTOR signaling can predispose to altered adipose tissue distribution, adipose tissue expansion, impaired peripheral metabolism, and detrimental changes to skeletal health with HFD - despite resistance to weight gain.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, MO, USA.
| | - David Shin
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, MO, USA.
| | - Kristann Magee
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, MO, USA.
| | - Anurag Majumdar
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, MO, USA.
| | - Ivana R Shen
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, MO, USA.
| | - Valeria Cavalli
- Department of Neuroscience, Washington University, Saint Louis, MO, USA; Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, MO, USA; Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Cell Biology and Physiology, Washington University, Saint Louis, MO, USA; Department of Biomedical Engineering, Washington University, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Modulating the activity of human nociceptors with a SCN10A promoter-specific viral vector tool. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100120. [PMID: 36816616 PMCID: PMC9932673 DOI: 10.1016/j.ynpai.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Despite the high prevalence of chronic pain as a disease in our society, there is a lack of effective treatment options for patients living with this condition. Gene therapies using recombinant AAVs are a direct method to selectively express genes of interest in target cells with the potential of, in the case of nociceptors, reducing neuronal firing in pain conditions. We designed a recombinant AAV vector expressing cargos whose expression was driven by a portion of the SCN10A (NaV1.8) promoter, which is predominantly active in nociceptors. We validated its specificity for nociceptors in mouse and human dorsal root ganglia and showed that it can drive the expression of functional proteins. Our viral vector and promoter package drove the expression of both excitatory or inhibitory DREADDs in primary human DRG cultures and in whole cell electrophysiology experiments, increased or decreased neuronal firing, respectively. Taken together, we present a novel viral tool that drives expression of cargo specifically in human nociceptors. This will allow for future specific studies of human nociceptor properties as well as pave the way for potential future gene therapies for chronic pain.
Collapse
|
4
|
Al-Kandery ASA, Rao MS, El-Hashim AZ. Prostaglandin E 2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 channels. Respir Res 2021; 22:296. [PMID: 34794450 PMCID: PMC8603488 DOI: 10.1186/s12931-021-01889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Cough hypersensitivity is a major characteristic feature associated with several types of cough, including chronic cough, but its underlying mechanisms remain to be fully understood. Inflammatory mediators, such as prostaglandin E2 (PGE2), have been implicated in both peripheral induction and sensitization of the cough reflex. In this study, using a conscious guinea pig model of cough, we investigated whether PGE2 can sensitize the cough reflex via central actions and, if so, via which mechanisms. Methods All drugs were administered by intracerebroventricular (i.c.v.) route and whole-body plethysmograph set-up was used for both induction, using aerosolized citric acid (0.2 M), and recording of cough. Immunohistochemistry was performed to confirm the expression of NaV 1.8 channels in the nucleus tractus solitarius (nTS). Results We show that both PGE2 and the non-selective EP1/EP3 agonist, sulprostone, dose-dependently enhanced the citric acid-induced cough (P ≤ 0.001, P ≤ 0.01, respectively). Pretreatment with the EP1 antagonist, ONO-8130, did not affect the sulprostone-induced cough sensitization, whilst the EP3 antagonist, L-798,106, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, treatment with either the EP2 agonist, butaprost or the EP4 agonist, L-902,688, had no effect on cough sensitization. Additionally, pretreatment with either the TRPV1 antagonist, JNJ-17203212 or the TRPA1 antagonist, HC-030031, alone or in combination, nor with the NaV 1.1, 1.2, 1.3, 1.4, 1.6 and 1.7 channel blocker, tetrodotoxin, had any effect on the cough. In contrast, pretreatment with the NaV 1.8 antagonist, A-803467, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, NaV 1.8 channels were shown to be expressed in the nTS. Conclusion Collectively, our findings show that PGE2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 but independently of TRPV1,TRPA1 and TTX-sensitive sodium channel activation. These results indicate that PGE2 plays an important role in central sensitization of the cough reflex and suggest that central EP3 receptors and/or NaVv 1.8 channels may represent novel antitussive molecular targets. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Al-Shaimaa A Al-Kandery
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
5
|
Xue Y, Chidiac C, Herault Y, Gaveriaux-Ruff C. Pain behavior in SCN9A (Nav1.7) and SCN10A (Nav1.8) mutant rodent models. Neurosci Lett 2021; 753:135844. [PMID: 33775738 DOI: 10.1016/j.neulet.2021.135844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022]
Abstract
The two voltage gated sodium channels Nav1.7 and Nav1.8 are expressed in the peripheral nervous system and involved in various pain conditions including inflammatory and neuropathic pain. Rodent models bearing deletions or mutations of the corresponding genes, Scn9a and Scn10a, were created in order to understand the role of these channels in the pathophysiological mechanism underlying pain symptoms. This review summarizes the pain behavior profiles reported in Scn9a and Scn10a rodent models. The complete loss-of-function or knockout (KO) of Scn9a or Scn10a and the conditional KO (cKO) of Scn9a in specific cell populations were shown to decrease sensitivity to various pain stimuli. The Possum mutant mice bearing a dominant hypermorphic mutation in Scn10a revealed higher sensitivity to noxious stimuli. Several gain-of-function mutations were identified in patients with painful small fiber neuropathy. Future knowledge obtained from preclinical models bearing these mutations will allow understanding how these mutations affect pain. In addition, the review gives perspectives for creating models that better mimic patients' pain symptoms in view to developing novel analgesic strategies.
Collapse
Affiliation(s)
- Yaping Xue
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) Translational Medicine and Neurogenetics Department, Illkirch, France
| | - Celeste Chidiac
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) Translational Medicine and Neurogenetics Department, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) Translational Medicine and Neurogenetics Department, Illkirch, France.
| | - Claire Gaveriaux-Ruff
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) Translational Medicine and Neurogenetics Department, Illkirch, France
| |
Collapse
|
6
|
Alsaloum M, Higerd GP, Effraim PR, Waxman SG. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat Rev Neurol 2020; 16:689-705. [PMID: 33110213 DOI: 10.1038/s41582-020-00415-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
The effective and safe treatment of pain is an unmet health-care need. Current medications used for pain management are often only partially effective, carry dose-limiting adverse effects and are potentially addictive, highlighting the need for improved therapeutic agents. Most common pain conditions originate in the periphery, where dorsal root ganglion and trigeminal ganglion neurons feed pain information into the CNS. Voltage-gated sodium (NaV) channels drive neuronal excitability and three subtypes - NaV1.7, NaV1.8 and NaV1.9 - are preferentially expressed in the peripheral nervous system, suggesting that their inhibition might treat pain while avoiding central and cardiac adverse effects. Genetic and functional studies of human pain disorders have identified NaV1.7, NaV1.8 and NaV1.9 as mediators of pain and validated them as targets for pain treatment. Consequently, multiple NaV1.7-specific and NaV1.8-specific blockers have undergone clinical trials, with others in preclinical development, and the targeting of NaV1.9, although hampered by technical constraints, might also be moving ahead. In this Review, we summarize the clinical and preclinical literature describing compounds that target peripheral NaV channels and discuss the challenges and future prospects for the field. Although the potential of peripheral NaV channel inhibition for the treatment of pain has yet to be realized, this remains a promising strategy to achieve non-addictive analgesia for multiple pain conditions.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Grant P Higerd
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA. .,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
7
|
Mukai Y, Nagayama A, Itoi K, Yamanaka A. Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 2020; 10:13639. [PMID: 32788592 PMCID: PMC7424526 DOI: 10.1038/s41598-020-70481-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The stress response is a physiological system for adapting to various internal and external stimuli. Corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus (PVN-CRF neurons) are known to play an important role in the stress response as initiators of the hypothalamic-pituitary-adrenal axis. However, the mechanism by which activity of PVN-CRF neurons is regulated by other neurons and bioactive substances remains unclear. Here, we developed a screening method using calcium imaging to identify how physiological substances directly affect the activity of PVN-CRF neurons. We used acute brain slices expressing a genetically encoded calcium indicator in PVN-CRF neurons using CRF-Cre recombinase mice and an adeno-associated viral vector under Cre control. PVN-CRF neurons were divided into ventral and dorsal portions. Bath application of candidate substances revealed 12 substances that increased and 3 that decreased intracellular calcium concentrations. Among these substances, angiotensin II and histamine mainly increased calcium in the ventral portion of the PVN-CRF neurons via AT1 and H1 receptors, respectively. Conversely, carbachol mainly increased calcium in the dorsal portion of the PVN-CRF neurons via both nicotinic and muscarinic acetylcholine receptors. Our method provides a precise and reliable means of evaluating the effect of a substance on PVN-CRF neuronal activity.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Ayako Nagayama
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan. .,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
8
|
Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Bois JD, Hunter JC. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na V1.7. J Med Chem 2019; 62:8695-8710. [PMID: 31012583 PMCID: PMC6786914 DOI: 10.1021/acs.jmedchem.8b01906] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.
Collapse
Affiliation(s)
- John V. Mulcahy
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Hassan Pajouhesh
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Jacob T. Beckley
- SiteOne Therapeutics, 351 Evergreen Drive, Suite B1, Bozeman, MT 59715
| | - Anton Delwig
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - J. Du Bois
- Stanford University, Lokey Chemistry and Biology, 337 Campus Drive, Stanford, CA 94305
| | - John C. Hunter
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| |
Collapse
|
9
|
Yen CM, Wu TC, Hsieh CL, Huang YW, Lin YW. Distal Electroacupuncture at the LI4 Acupoint Reduces CFA-Induced Inflammatory Pain via the Brain TRPV1 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20184471. [PMID: 31510092 PMCID: PMC6769885 DOI: 10.3390/ijms20184471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/01/2023] Open
Abstract
There is accumulating evidence supporting electroacupuncture’s (EA) therapeutic effects. In mice, local EA reliably attenuates inflammatory pain and increases the transient receptor potential cation channel, subfamily V, member 1 (TRPV1). However, the effect of distal acupoint EA on pain control has rarely been studied. We used a mouse model to investigate the analgesic effect of distal EA by measuring TRPV1 expression in the brain. Complete Freund’s adjuvant (CFA) was injected into mice’s hind paws to induce inflammatory pain. The EA-treated group received EA at the LI4 acupoint on the bilateral forefeet on the second and the third days, whereas the control group underwent sham manipulation. Mechanical and thermal pain behavior tests showed that the EA-treated group experienced inflammatory pain alleviation immediately after EA, which did not occur in the sham group. Additionally, following CFA injection, the expression of TRPV1-associated molecules such as phosphorylated protein kinase A (pPKA), extracelluar signal-regulated kinase (pERK), and cAMP-response-element-binding protein (pCREB) increased in the prefrontal cortex (PFC) and the hypothalamus but decreased in the periaqueductal gray (PAG) area. These changes were significantly attenuated by EA but not sham EA. Our results show an analgesic effect of distal EA, which is based on the traditional Chinese medicine theory. The mechanism underlying this analgesic effect involves TRPV1 in the PFC, the hypothalamus, and the PAG. These novel findings are relevant for the evaluation and the treatment of clinical inflammatory pain syndrome.
Collapse
Affiliation(s)
- Chia-Ming Yen
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
| | - Tong-Chien Wu
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Liang Hsieh
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Wei Huang
- Emergency and Critical Care Center, E-Da Hospital, Kaohsiung 80708, Taiwan.
- School of Nursing, College of Nursing, Fooyin University, Kaohsiung 824, Taiwan.
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
10
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
11
|
Chen L, Huang J, Zhao P, Persson AK, Dib-Hajj FB, Cheng X, Tan A, Waxman SG, Dib-Hajj SD. Conditional knockout of Na V1.6 in adult mice ameliorates neuropathic pain. Sci Rep 2018; 8:3845. [PMID: 29497094 PMCID: PMC5832877 DOI: 10.1038/s41598-018-22216-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
Voltage-gated sodium channels NaV1.7, NaV1.8 and NaV1.9 have been the focus for pain studies because their mutations are associated with human pain disorders, but the role of NaV1.6 in pain is less understood. In this study, we selectively knocked out NaV1.6 in dorsal root ganglion (DRG) neurons, using NaV1.8-Cre directed or adeno-associated virus (AAV)-Cre mediated approaches, and examined the specific contribution of NaV1.6 to the tetrodotoxin-sensitive (TTX-S) current in these neurons and its role in neuropathic pain. We report here that NaV1.6 contributes up to 60% of the TTX-S current in large, and 34% in small DRG neurons. We also show NaV1.6 accumulates at nodes of Ranvier within the neuroma following spared nerve injury (SNI). Although NaV1.8-Cre driven NaV1.6 knockout does not alter acute, inflammatory or neuropathic pain behaviors, AAV-Cre mediated NaV1.6 knockout in adult mice partially attenuates SNI-induced mechanical allodynia. Additionally, AAV-Cre mediated NaV1.6 knockout, mostly in large DRG neurons, significantly attenuates excitability of these neurons after SNI and reduces NaV1.6 accumulation at nodes of Ranvier at the neuroma. Together, NaV1.6 in NaV1.8-positive neurons does not influence pain thresholds under normal or pathological conditions, but NaV1.6 in large NaV1.8-negative DRG neurons plays an important role in neuropathic pain.
Collapse
Affiliation(s)
- Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Anna-Karin Persson
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Andrew Tan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
12
|
Udit S, Burton M, Rutkowski JM, Lee S, Bookout AL, Scherer PE, Elmquist JK, Gautron L. Na v1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol Metab 2017; 6:1081-1091. [PMID: 29031710 PMCID: PMC5641637 DOI: 10.1016/j.molmet.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND METHODS Metabolic viscera and their vasculature are richly innervated by peripheral sensory neurons. Here, we examined the metabolic and inflammatory profiles of mice with selective ablation of all Nav1.8-expressing primary afferent neurons. RESULTS While mice lacking sensory neurons displayed no differences in body weight, food intake, energy expenditure, or body composition compared to controls on chow diet, ablated mice developed an exaggerated inflammatory response to high-fat feeding characterized by bouts of weight loss, splenomegaly, elevated circulating interleukin-6 and hepatic serum amyloid A expression. This phenotype appeared to be directly mediated by the ingestion of saturated lipids. CONCLUSIONS These data demonstrate that the Nav1.8-expressing afferent neurons are not essential for energy balance but are required for limiting the acute phase response caused by an obesogenic diet.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Michael Burton
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA.
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA.
| |
Collapse
|
13
|
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Physiology and Pathophysiology of Sodium Channel Inactivation. CURRENT TOPICS IN MEMBRANES 2016; 78:479-509. [PMID: 27586293 DOI: 10.1016/bs.ctm.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications.
Collapse
Affiliation(s)
- M-R Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - K Aimar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R Ghadiry-Tavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - A Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Liu XP, Wooltorton JRA, Gaboyard-Niay S, Yang FC, Lysakowski A, Eatock RA. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents. J Neurophysiol 2016; 115:2536-55. [PMID: 26936982 DOI: 10.1152/jn.00902.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 01/02/2023] Open
Abstract
Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Speech and Hearing Bioscience and Technology Program, Harvard-Massachusetts Institute of Technology Health Sciences and Technology Program, Cambridge, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | | | - Sophie Gaboyard-Niay
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Anne Eatock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Patthey C, Clifford H, Haerty W, Ponting CP, Shimeld SM, Begbie J. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev 2016; 11:3. [PMID: 26819088 PMCID: PMC4730756 DOI: 10.1186/s13064-016-0057-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Conclusions One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0057-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, Oxford, UK. .,Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Harry Clifford
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Wilfried Haerty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | | | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|