1
|
Mimura K, Matsumoto J, Mochihashi D, Nakamura T, Nishijo H, Higuchi M, Hirabayashi T, Minamimoto T. Unsupervised decomposition of natural monkey behavior into a sequence of motion motifs. Commun Biol 2024; 7:1080. [PMID: 39227400 PMCID: PMC11371840 DOI: 10.1038/s42003-024-06786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Nonhuman primates (NHPs) exhibit complex and diverse behavior that typifies advanced cognitive function and social communication, but quantitative and systematical measure of this natural nonverbal processing has been a technical challenge. Specifically, a method is required to automatically segment time series of behavior into elemental motion motifs, much like finding meaningful words in character strings. Here, we propose a solution called SyntacticMotionParser (SMP), a general-purpose unsupervised behavior parsing algorithm using a nonparametric Bayesian model. Using three-dimensional posture-tracking data from NHPs, SMP automatically outputs an optimized sequence of latent motion motifs classified into the most likely number of states. When applied to behavioral datasets from common marmosets and rhesus monkeys, SMP outperformed conventional posture-clustering models and detected a set of behavioral ethograms from publicly available data. SMP also quantified and visualized the behavioral effects of chemogenetic neural manipulations. SMP thus has the potential to dramatically improve our understanding of natural NHP behavior in a variety of contexts.
Collapse
Affiliation(s)
- Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, 190-0014, Japan.
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-8555, Japan
| | - Daichi Mochihashi
- Department of Statistical Inference and Mathematics, The Institute of Statistical Mathematics, Tokyo, 190-9562, Japan
| | - Tomoaki Nakamura
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, Tokyo, 182-8585, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-8555, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| |
Collapse
|
2
|
Oyama K, Majima K, Nagai Y, Hori Y, Hirabayashi T, Eldridge MAG, Mimura K, Miyakawa N, Fujimoto A, Hori Y, Iwaoki H, Inoue KI, Saunders RC, Takada M, Yahata N, Higuchi M, Richmond BJ, Minamimoto T. Distinct roles of monkey OFC-subcortical pathways in adaptive behavior. Nat Commun 2024; 15:6487. [PMID: 39198415 PMCID: PMC11358305 DOI: 10.1038/s41467-024-50505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/10/2024] [Indexed: 09/01/2024] Open
Abstract
Primates must adapt to changing environments by optimizing their behavior to make beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which two male macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate dissociable contributions of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.
Collapse
Affiliation(s)
- Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kei Majima
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Atsushi Fujimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
3
|
Panzer E, Guimares-Olmo I, Pereira de Vasconcelos A, Stéphan A, Cassel JC. In relentless pursuit of the white whale: A role for the ventral midline thalamus in behavioral flexibility and adaption? Neurosci Biobehav Rev 2024; 163:105762. [PMID: 38857666 DOI: 10.1016/j.neubiorev.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Isabella Guimares-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
4
|
Ha LJ, Yeo HG, Kim YG, Baek I, Baeg E, Lee YH, Won J, Jung Y, Park J, Jeon CY, Kim K, Min J, Song Y, Park JH, Nam KR, Son S, Yoo SBM, Park SH, Choi WS, Lim KS, Choi JY, Cho JH, Lee Y, Choi HJ. Hypothalamic neuronal activation in non-human primates drives naturalistic goal-directed eating behavior. Neuron 2024; 112:2218-2230.e6. [PMID: 38663401 DOI: 10.1016/j.neuron.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024]
Abstract
Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.
Collapse
Affiliation(s)
- Leslie Jaesun Ha
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yunkyo Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jisun Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Youngkyu Song
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeong-Heon Park
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sangkyu Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, Korea National University of Science and, Technology, Seoul, Republic of Korea.
| | - Jee-Hyun Cho
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
5
|
MINAMIMOTO T, NAGAI Y, OYAMA K. Imaging-based chemogenetics for dissecting neural circuits in nonhuman primates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:476-489. [PMID: 39401901 PMCID: PMC11535006 DOI: 10.2183/pjab.100.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024]
Abstract
Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.
Collapse
Affiliation(s)
- Takafumi MINAMIMOTO
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji NAGAI
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kei OYAMA
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Oyama K, Majima K, Nagai Y, Hori Y, Hirabayashi T, Eldridge MAG, Mimura K, Miyakawa N, Fujimoto A, Hori Y, Iwaoki H, Inoue KI, Saunders RC, Takada M, Yahata N, Higuchi M, Richmond BJ, Minamimoto T. Distinct roles of monkey OFC-subcortical pathways in adaptive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567492. [PMID: 38076986 PMCID: PMC10705585 DOI: 10.1101/2023.11.17.567492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.
Collapse
Affiliation(s)
- Kei Oyama
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kei Majima
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Naohisa Miyakawa
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Atsushi Fujimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Haruhiko Iwaoki
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Hori Y, Nagai Y, Hori Y, Oyama K, Mimura K, Hirabayashi T, Inoue KI, Fujinaga M, Zhang MR, Takada M, Higuchi M, Minamimoto T. Multimodal Imaging for Validation and Optimization of Ion Channel-Based Chemogenetics in Nonhuman Primates. J Neurosci 2023; 43:6619-6627. [PMID: 37620158 PMCID: PMC10538582 DOI: 10.1523/jneurosci.0625-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.
Collapse
Affiliation(s)
- Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kei Oyama
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
8
|
Lerchner W, Dash K, Rose D, Eldridge M, Rothenhoefer K, Yan X, Costa V, Averbeck B, Richmond B. Efficient viral expression of a chemogenetic receptor in the old-world monkey amygdala. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100091. [PMID: 37397810 PMCID: PMC10313863 DOI: 10.1016/j.crneur.2023.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Genetically encoded synthetic receptors, such as the chemogenetic and optogenetic proteins, are powerful tools for functional brain studies in animals. In the primate brain, with its comparatively large, intricate anatomical structures, it can be challenging to express transgenes, such as the hM4Di chemogenetic receptor, in a defined anatomical structure with high penetrance. Here, we compare parameters for lentivirus vector injections in the rhesus monkey amygdala. We find that four injections of 20 μl, infused at 0.5 μl/min, can achieve neuronal hM4Di expression in 50-100% of neurons within a 60 mm3 volume, without observable damage from overexpression. Increasing the number of hM4Di_CFP lentivirus injections to up to 12 sites per hemisphere, resulted in 30%-40% neuronal coverage of the overall amygdala volume, with coverage reaching 60% in some subnuclei. Manganese Chloride was mixed with lentivirus and used as an MRI marker to verify targeting accuracy and correct unsuccessful injections in these experiments. In a separate monkey we visualized, in vivo, viral expression of the hM4Di receptor protein in the amygdala, using Positron Emission Tomography. Together, these data show efficient and verifiable expression of a chemogenetic receptor in old-world monkey amygdala.
Collapse
Affiliation(s)
- Walter Lerchner
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kiana Dash
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deborah Rose
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark.A.G. Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn.M. Rothenhoefer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Vincent.D. Costa
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barry.J. Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Dygalo NN. Connectivity of the Brain in the Light of Chemogenetic Modulation of Neuronal Activity. Acta Naturae 2023; 15:4-13. [PMID: 37538804 PMCID: PMC10395778 DOI: 10.32607/actanaturae.11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 08/05/2023] Open
Abstract
Connectivity is the coordinated activity of the neuronal networks responsible for brain functions; it is detected based on functional magnetic resonance imaging signals that depend on the oxygen level in the blood (blood oxygen level-dependent (BOLD) signals) supplying the brain. The BOLD signal is only indirectly related to the underlying neuronal activity; therefore, it remains an open question whether connectivity and changes in it are only manifestations of normal and pathological states of the brain or they are, to some extent, the causes of these states. The creation of chemogenetic receptors activated by synthetic drugs (designer receptors exclusively activated by designer drugs, DREADDs), which, depending on the receptor type, either facilitate or, on the contrary, inhibit the neuronal response to received physiological stimuli, makes it possible to assess brain connectivity in the light of controlled neuronal activity. Evidence suggests that connectivity is based on neuronal activity and is a manifestation of connections between brain regions that integrate sensory, cognitive, and motor functions. Chemogenetic modulation of the activity of various groups and types of neurons changes the connectivity of the brain and its complex functions. Chemogenetics can be useful in reconfiguring the pathological mechanisms of nervous and mental diseases. The initiated integration, based on the whole-brain connectome from molecular-cellular, neuronal, and synaptic processes to higher nervous activity and behavior, has the potential to significantly increase the fundamental and applied value of this branch of neuroscience.
Collapse
Affiliation(s)
- N. N. Dygalo
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Novosibirsk, 630090 Russian Federation
| |
Collapse
|