1
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. Cells 2024; 13:1390. [PMID: 39195278 PMCID: PMC11352439 DOI: 10.3390/cells13161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development, including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and include regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
2
|
Liu X, Pacwa A, Bresciani G, Swierczynska M, Dorecka M, Smedowski A. Retinal primary cilia and their dysfunction in retinal neurodegenerative diseases: beyond ciliopathies. Mol Med 2024; 30:109. [PMID: 39060957 PMCID: PMC11282803 DOI: 10.1186/s10020-024-00875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cilia are sensory organelles that extend from the cellular membrane and are found in a wide range of cell types. Cilia possess a plethora of vital components that enable the detection and transmission of several signaling pathways, including Wnt and Shh. In turn, the regulation of ciliogenesis and cilium length is influenced by various factors, including autophagy, organization of the actin cytoskeleton, and signaling inside the cilium. Irregularities in the development, maintenance, and function of this cellular component lead to a range of clinical manifestations known as ciliopathies. The majority of people with ciliopathies have a high prevalence of retinal degeneration. The most common theory is that retinal degeneration is primarily caused by functional and developmental problems within retinal photoreceptors. The contribution of other ciliated retinal cell types to retinal degeneration has not been explored to date. In this review, we examine the occurrence of primary cilia in various retinal cell types and their significance in pathology. Additionally, we explore potential therapeutic approaches targeting ciliopathies. By engaging in this endeavor, we present new ideas that elucidate innovative concepts for the future investigation and treatment of retinal ciliopathies.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Anna Pacwa
- GlaucoTech Co, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | | | - Marta Swierczynska
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co, Katowice, Poland.
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland.
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland.
| |
Collapse
|
3
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603187. [PMID: 39091861 PMCID: PMC11291033 DOI: 10.1101/2024.07.20.603187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA-sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and included regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno
| | | |
Collapse
|
4
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022; 11:e78342. [PMID: 36459481 PMCID: PMC9718532 DOI: 10.7554/elife.78342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.
Collapse
Affiliation(s)
- Xiaodong Li
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
| | - Patrick J Gordon
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - John A Gaynes
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - Alexandra W Fuller
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Randy Ringuette
- Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Valerie Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health NetworkTorontoCanada
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pulin Li
- Whitehead Institute of Biomedical Research, Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
6
|
Zhang X, Mandric I, Nguyen KH, Nguyen TTT, Pellegrini M, Grove JCR, Barnes S, Yang XJ. Single Cell Transcriptomic Analyses Reveal the Impact of bHLH Factors on Human Retinal Organoid Development. Front Cell Dev Biol 2021; 9:653305. [PMID: 34055784 PMCID: PMC8155690 DOI: 10.3389/fcell.2021.653305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proliferating retinal progenitors: pre-neurogenic, neurogenic, and cell cycle-exiting progenitors. Each shows different expression profile of bHLH factors. The cell cycle-exiting progenitors feed into a postmitotic heterozygous neuroblast pool that gives rise to early born neuronal lineages. Elevating ATOH7 or Neurog2 expression accelerates the transition from the pre-neurogenic to the neurogenic state, and expands the exiting progenitor and neuroblast populations. In addition, ATOH7 and Neurog2 significantly, yet differentially, enhance retinal ganglion cell and cone photoreceptor production. Moreover, single cell transcriptome analyses reveal that ATOH7 and Neurog2 each assert positive autoregulation, and both suppress key bHLH factors associated with the pre-neurogenic and states and elevate bHLH factors expressed by exiting progenitors and differentiating neuroblasts. This study thus provides novel insight regarding how ATOH7 and Neurog2 impact human retinal progenitor behaviors and neuroblast fate choices.
Collapse
Affiliation(s)
- Xiangmei Zhang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Igor Mandric
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin H Nguyen
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thao T T Nguyen
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xian-Jie Yang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
9
|
LIM Homeobox 4 (lhx4) regulates retinal neural differentiation and visual function in zebrafish. Sci Rep 2021; 11:1977. [PMID: 33479361 PMCID: PMC7820405 DOI: 10.1038/s41598-021-81211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
LIM homeobox 4 (LHX4) is expressed in the photoreceptors (PRs) of the outer nuclear layer (ONL) and bipolar cells (BCs) of the inner nuclear layer (INL) in mouse and chicken retina. It regulates the subtype-specific development of rod BCs and cone BCs in the mouse retina. However, no report has been published on its expression and function in the zebrafish retina. In this study, we assessed the expression of Lhx4 using in situ hybridization (ISH) technique and explored its role in zebrafish (Danio rerio) retinal development via morpholino (MO) technology. We found that the expression of lhx4 in the zebrafish retina begins 48 h post-fertilization (hpf) and is continuously expressed in the ONL and INL. A zebrafish model constructed with lhx4 knockdown in the eyes through vivo-MO revealed that: lhx4 knockdown inhibits the differentiation of Parvalbumin+ amacrine cells (ACs) and Rhodopsin+ rod photoreceptors (RPs), enhances the expression of visual system homeobox 2 (vsx2); and damages the responses of zebrafish to light stimulus, without affecting the differentiation of OFF-BCs and rod BCs, and apoptosis in the retina. These findings reveal that lhx4 regulates neural differentiation in the retina and visual function during zebrafish embryonic development.
Collapse
|
10
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
11
|
Sawant OB, Jidigam VK, Fuller RD, Zucaro OF, Kpegba C, Yu M, Peachey NS, Rao S. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina. FASEB J 2019; 33:8745-8758. [PMID: 31002540 PMCID: PMC6662963 DOI: 10.1096/fj.201801832rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
A single pool of multipotent retinal progenitor cells give rise to the diverse cell types within the mammalian retina. Such cellular diversity is due to precise control of various cellular processes like cell specification, proliferation, differentiation, and maturation. Circadian clock genes can control the expression of key regulators of cell cycle progression and therefore can synchronize the cell cycle state of a heterogeneous population of cells. Here we show that the protein encoded by the circadian clock gene brain and muscle arnt-like protein-1 (Bmal1) is expressed in the embryonic retina and is required to regulate the timing of cell cycle exit. Accordingly, loss of Bmal1 during retinal neurogenesis results in increased S-phase entry and delayed cell cycle exit. Disruption in cell cycle kinetics affects the timely generation of the appropriate neuronal population thus leading to an overall decrease in the number of retinal ganglion cells, amacrine cells, and an increase in the number of the late-born type II cone bipolar cells as well as the Müller glia. Additionally, the mislocalized Müller cells are observed in the photoreceptor layer in the Bmal1 conditional mutants. These changes affect the functional integrity of the visual circuitry as we report a significant delay in visual evoked potential implicit time in the retina-specific Bmal1 null animals. Our results demonstrate that Bmal1 is required to maintain the balance between the neural and glial cells in the embryonic retina by coordinating the timing of cell cycle entry and exit. Thus, Bmal1 plays an essential role during retinal neurogenesis affecting both development and function of the mature retina.-Sawant, O. B., Jidigam, V. K., Fuller, R. D., Zucaro, O. F., Kpegba, C., Yu, M., Peachey, N. S., Rao, S. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina.
Collapse
Affiliation(s)
- Onkar B. Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vijay K. Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rebecca D. Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Olivia F. Zucaro
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cristel Kpegba
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Miltner AM, Torre AL. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019; 248:118-128. [PMID: 30242792 PMCID: PMC7141838 DOI: 10.1002/dvdy.24672] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The neurons of the retina can be affected by a wide variety of inherited or environmental degenerations that can lead to vision loss and even blindness. Retinal ganglion cell (RGC) degeneration is the hallmark of glaucoma and other optic neuropathies that affect millions of people worldwide. Numerous strategies are being trialed to replace lost neurons in different degeneration models, and in recent years, stem cell technologies have opened promising avenues to obtain donor cells for retinal repair. Stem cell-based transplantation has been most frequently used for the replacement of rod photoreceptors, but the same tools could potentially be used for other retinal cell types, including RGCs. However, RGCs are not abundant in stem cell-derived cultures, and in contrast to the short-distance wiring of photoreceptors, RGC axons take a long and intricate journey to connect with numerous brain nuclei. Hence, a number of challenges still remain, such as the ability to scale up the production of RGCs and a reliable and functional integration into the adult diseased retina upon transplantation. In this review, we discuss the recent advancements in the development of replacement therapies for RGC degenerations and the challenges that we need to overcome before these technologies can be applied to the clinic. Developmental Dynamics 248:118-128, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| |
Collapse
|
13
|
Marcucci F, Soares CA, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol 2019; 527:212-224. [PMID: 29761490 PMCID: PMC6237670 DOI: 10.1002/cne.24467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
In higher vertebrates, the circuit formed by retinal ganglion cells (RGCs) projecting ipsilaterally (iRGCs) or contralaterally (cRGCs) to the brain permits binocular vision and depth perception. iRGCs and cRGCs differ in their position within the retina and in expression of transcription, guidance and activity-related factors. To parse whether these two populations also differ in the timing of their genesis, a feature of distinct neural subtypes and associated projections, we used newer birthdating methods and cell subtype specific markers to determine birthdate and cell cycle exit more precisely than previously. In the ventrotemporal (VT) retina, i- and cRGCs intermingle and neurogenesis in this zone lags behind RGC production in the rest of the retina where only cRGCs are positioned. In addition, within the VT retina, i- and cRGC populations are born at distinct times: neurogenesis of iRGCs surges at E13, and cRGCs arise as early as E14, not later in embryogenesis as reported. Moreover, in the ventral ciliary margin zone (CMZ), which contains progenitors that give rise to some iRGCs in ventral neural retina (Marcucci et al., 2016), cell cycle exit is slower than in other retinal regions in which progenitors give rise only to cRGCs. Further, when the cell cycle regulator Cyclin D2 is missing, cell cycle length in the CMZ is further reduced, mirroring the reduction of both i- and cRGCs in the Cyclin D2 mutant. These results strengthen the view that differential regulation of cell cycle dynamics at the progenitor level is associated with specific RGC fates and laterality of axonal projection.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Célia A. Soares
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Carol Mason
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
14
|
Rodgers HM, Huffman VJ, Voronina VA, Lewandoski M, Mathers PH. The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Mech Dev 2018; 151:18-29. [PMID: 29665410 PMCID: PMC5972075 DOI: 10.1016/j.mod.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
The Retinal homeobox gene (Rx; also Rax) plays a crucial role in the early development of the vertebrate eye. Germline deletion of Rx in mice results in the failure of optic vesicle formation, leading to anophthalmia. Recent research using conditional mouse knockout models provides some clues to the role of Rx in eye development following optic vesicle formation. However, the functions of Rx in embryonic retinogenesis are still not fully understood. We investigated the function of Rx in the mouse neural retina using a conditional knockout where the Pax6α-Cre driver deletes Rx activity in early retinal progenitors. The deletion of Rx activity causes a loss of retinal lamination, a depletion of retinal progenitors, and a change in retinal cell fate in our conditional knockout model. The deletion of Rx leads to an absence of late-born retinal neurons (rods and bipolar cells) and Müller glia at postnatal ages, as well as a loss of the early-born cone photoreceptors. Decreased BrdU labeling in the Rx-deleted portion of the retina suggests a loss of retinal progenitors via early cell cycle exit, which likely prevents the formation of late-born cells. As early-born cells, cone photoreceptors should not be as affected by early cell cycle exit of retinal progenitors. However, embryonic cone photoreceptor labeling is also markedly reduced in Rx-deleted retinas. Together these data demonstrate the importance of Rx for retinal progenitor proliferation and a specific requirement of Rx for cone formation in mice.
Collapse
Affiliation(s)
- H M Rodgers
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - V J Huffman
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Potomac State College of West Virginia University, Keyser, WV 26726, United States; Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - V A Voronina
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, United States; Biochemistry and Molecular Biology Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - M Lewandoski
- Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, United States
| | - P H Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
15
|
Zhang XM, Hashimoto T, Tang R, Yang XJ. Elevated expression of human bHLH factor ATOH7 accelerates cell cycle progression of progenitors and enhances production of avian retinal ganglion cells. Sci Rep 2018; 8:6823. [PMID: 29717171 PMCID: PMC5931526 DOI: 10.1038/s41598-018-25188-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
The production of vertebrate retinal projection neurons, retinal ganglion cells (RGCs), is regulated by cell-intrinsic determinants and cell-to-cell signaling events. The basic-helix-loop-helix (bHLH) protein Atoh7 is a key neurogenic transcription factor required for RGC development. Here, we investigate whether manipulating human ATOH7 expression among uncommitted progenitors can promote RGC fate specification and thus be used as a strategy to enhance RGC genesis. Using the chicken retina as a model, we show that cell autonomous expression of ATOH7 is sufficient to induce precocious RGC formation and expansion of the neurogenic territory. ATOH7 overexpression among neurogenic progenitors significantly enhances RGC production at the expense of reducing the progenitor pool. Furthermore, forced expression of ATOH7 leads to a minor increase of cone photoreceptors. We provide evidence that elevating ATOH7 levels accelerates cell cycle progression from S to M phase and promotes cell cycle exit. We also show that ATOH7-induced ectopic RGCs often exhibit aberrant axonal projection patterns and are correlated with increased cell death during the period of retinotectal connections. These results demonstrate the high potency of human ATOH7 in promoting early retinogenesis and specifying the RGC differentiation program, thus providing insight for manipulating RGC production from stem cell-derived retinal organoids.
Collapse
Affiliation(s)
- Xiang-Mei Zhang
- Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Takao Hashimoto
- Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Ronald Tang
- Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Xian-Jie Yang
- Stein Eye Institute, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Rodgers HM, Belcastro M, Sokolov M, Mathers PH. Embryonic markers of cone differentiation. Mol Vis 2016; 22:1455-1467. [PMID: 28031694 PMCID: PMC5178185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Photoreceptor cells are born in two distinct phases of vertebrate retinogenesis. In the mouse retina, cones are born primarily during embryogenesis, while rod formation occurs later in embryogenesis and early postnatal ages. Despite this dichotomy in photoreceptor birthdates, the visual pigments and phototransduction machinery are not reactive to visual stimulus in either type of photoreceptor cell until the second postnatal week. Several markers of early cone formation have been identified, including Otx2, Crx, Blimp1, NeuroD, Trβ2, Rorβ, and Rxrγ, and all are thought to be involved in cellular determination. However, little is known about the expression of proteins involved in cone visual transduction during early retinogenesis. Therefore, we sought to characterize visual transduction proteins that are expressed specifically in photoreceptors during mouse embryogenesis. METHODS Eye tissue was collected from control and phosducin-null mice at embryonic and early postnatal ages. Immunohistochemistry and quantitative reverse transcriptase-PCR (qPCR) were used to measure the spatial and temporal expression patterns of phosducin (Pdc) and cone transducin γ (Gngt2) proteins and transcripts in the embryonic and early postnatal mouse retina. RESULTS We identified the embryonic expression of phosducin (Pdc) and cone transducin γ (Gngt2) that coincides temporally and spatially with the earliest stages of cone histogenesis. Using immunohistochemistry, the phosducin protein was first detected in the retina at embryonic day (E)12.5, and cone transducin γ was observed at E13.5. The phosducin and cone transducin γ proteins were seen only in the outer neuroblastic layer, consistent with their expression in photoreceptors. At the embryonic ages, phosducin was coexpressed with Rxrγ, a known cone marker, and with Otx2, a marker of photoreceptors. Pdc and Gngt2 mRNAs were detected as early as E10.5 with qPCR, although at low levels. CONCLUSIONS Visual transduction proteins are expressed at the earliest stages in developing cones, well before the onset of opsin gene expression. Given the delay in opsin expression in rods and cones, we speculate on the embryonic function of these G-protein signaling components beyond their roles in the visual transduction cascade.
Collapse
Affiliation(s)
- Helen M. Rodgers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV,Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV
| | - Marycharmain Belcastro
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV
| | - Maxim Sokolov
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| | - Peter H. Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV,Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| |
Collapse
|
17
|
Kahn BM, Corman TS, Lovelace K, Hong M, Krauss RS, Epstein DJ. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech 2016; 10:29-37. [PMID: 27935818 PMCID: PMC5278523 DOI: 10.1242/dmm.026195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023] Open
Abstract
Septo-optic dysplasia (SOD) is a congenital disorder characterized by optic nerve, pituitary and midline brain malformations. The clinical presentation of SOD is highly variable with a poorly understood etiology. The majority of SOD cases are sporadic, but in rare instances inherited mutations have been identified in a small number of transcription factors, some of which regulate the expression of Sonic hedgehog (Shh) during mouse forebrain development. SOD is also associated with young maternal age, suggesting that environmental factors, including alcohol consumption at early stages of pregnancy, might increase the risk of developing this condition. Here, we address the hypothesis that SOD is a multifactorial disorder stemming from interactions between mutations in Shh pathway genes and prenatal ethanol exposure. Mouse embryos with mutations in the Shh co-receptor, Cdon, were treated in utero with ethanol or saline at embryonic day 8 (E8.0) and evaluated for optic nerve hypoplasia (ONH), a prominent feature of SOD. We show that both Cdon-/- mutation and prenatal ethanol exposure independently cause ONH through a similar pathogenic mechanism that involves selective inhibition of Shh signaling in retinal progenitor cells, resulting in their premature cell-cycle arrest, precocious differentiation and failure to properly extend axons to the optic nerve. The ONH phenotype was not exacerbated in Cdon-/- embryos treated with ethanol, suggesting that an intact Shh signaling pathway is required for ethanol to exert its teratogenic effects. These results support a model whereby mutations in Cdon and prenatal ethanol exposure increase SOD risk through spatiotemporal perturbations in Shh signaling activity.
Collapse
Affiliation(s)
- Benjamin M Kahn
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tanya S Corman
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Korah Lovelace
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mingi Hong
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
18
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
19
|
Pyczek J, Buslei R, Schult D, Hölsken A, Buchfelder M, Heß I, Hahn H, Uhmann A. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland. Sci Rep 2016; 6:24928. [PMID: 27109116 PMCID: PMC4842994 DOI: 10.1038/srep24928] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.
Collapse
Affiliation(s)
- Joanna Pyczek
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| | - Rolf Buslei
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - David Schult
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Annett Hölsken
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Ina Heß
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| | - Heidi Hahn
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| |
Collapse
|
20
|
Ringuette R, Atkins M, Lagali PS, Bassett EA, Campbell C, Mazerolle C, Mears AJ, Picketts DJ, Wallace VA. A Notch-Gli2 axis sustains Hedgehog responsiveness of neural progenitors and Müller glia. Dev Biol 2016; 411:85-100. [PMID: 26795056 DOI: 10.1016/j.ydbio.2016.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 11/18/2022]
Abstract
Neurogenesis is regulated by the dynamic and coordinated activity of several extracellular signalling pathways, but the basis for crosstalk between these pathways remains poorly understood. Here we investigated regulatory interactions between two pathways that are each required for neural progenitor cell maintenance in the postnatal retina; Hedgehog (Hh) and Notch signalling. Both pathways are activated in progenitor cells in the postnatal retina based on the co-expression of fluorescent pathway reporter transgenes at the single cell level. Disrupting Notch signalling, genetically or pharmacologically, induces a rapid downregulation of all three Gli proteins and inhibits Hh-induced proliferation. Ectopic Notch activation, while not sufficient to promote Hh signalling or proliferation, increases Gli2 protein. We show that Notch regulation of Gli2 in Müller glia renders these cells competent to proliferate in response to Hh. These data suggest that Notch signalling converges on Gli2 to prime postnatal retinal progenitor cells and Müller glia to proliferate in response to Hh.
Collapse
Affiliation(s)
- Randy Ringuette
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael Atkins
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Pamela S Lagali
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Erin A Bassett
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Charles Campbell
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Chantal Mazerolle
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Alan J Mears
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Valerie A Wallace
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5; Vision Research Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Christ A, Christa A, Klippert J, Eule JC, Bachmann S, Wallace VA, Hammes A, Willnow TE. LRP2 Acts as SHH Clearance Receptor to Protect the Retinal Margin from Mitogenic Stimuli. Dev Cell 2015; 35:36-48. [PMID: 26439398 DOI: 10.1016/j.devcel.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 01/17/2023]
Abstract
During forebrain development, LRP2 promotes morphogen signaling as an auxiliary SHH receptor. However, in the developing retina, LRP2 assumes the opposing function, mediating endocytic clearance of SHH and antagonizing morphogen action. LRP2-mediated clearance prevents spread of SHH activity from the central retina into the retinal margin to protect quiescent progenitor cells in this niche from mitogenic stimuli. Loss of LRP2 in mice increases the sensitivity of the retinal margin for SHH, causing expansion of the retinal progenitor cell pool and hyperproliferation of this tissue. Our findings document the ability of LRP2 to act, in a context-dependent manner, as activator or inhibitor of the SHH pathway. Our current findings uncovered LRP2 activity as the molecular mechanism imposing quiescence of the retinal margin in the mammalian eye and suggest SHH-induced proliferation of the retinal margin as cause of the large eye phenotype observed in mouse models and patients with LRP2 defects.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| | - Anna Christa
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Klippert
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - J Corinna Eule
- Small Animal Clinic, Free University Berlin, 14163 Berlin, Germany
| | - Sebastian Bachmann
- Institute for Vegetative Anatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Valerie A Wallace
- Toronto Western Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Annette Hammes
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
22
|
Heavner WE, Andoniadou CL, Pevny LH. Establishment of the neurogenic boundary of the mouse retina requires cooperation of SOX2 and WNT signaling. Neural Dev 2014; 9:27. [PMID: 25488119 PMCID: PMC4295269 DOI: 10.1186/1749-8104-9-27] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/03/2022] Open
Abstract
Background Eye development in vertebrates relies on the critical regulation of SOX2 expression. Humans with mutations in SOX2 often suffer from eye defects including anophthalmia (no eye) and microphthalmia (small eye). In mice, deletion of Sox2 in optic cup progenitor cells results in loss of neural competence and cell fate conversion of the neural retina to a non-neurogenic fate, specifically the acquisition of fate associated with progenitors of the ciliary epithelium. This fate is also promoted with constitutive expression of stabilized β-Catenin in the optic cup, where the WNT pathway is up-regulated. We addressed whether SOX2 co-ordinates the neurogenic boundary of the retina through modulating the WNT/β-Catenin pathway by using a genetic approach in the mouse. Results Upon deletion of Sox2 in the optic cup, response to WNT signaling was expanded, correlating with loss of neural competence, cell fate conversion of the neural retina to ciliary epithelium primordium and, in addition, increased cell cycle time of optic cup progenitors. Removal of Ctnnb1 rescued the cell fate conversion; however, the loss of neural competence and the proliferation defect resulting from lack of SOX2 were not overcome. Lastly, central Sox2-deficient optic cup progenitor cells exhibited WNT-independent up-regulation of D-type Cyclins. Conclusion We propose two distinct roles for SOX2 in the developing retina. Our findings suggest that SOX2 antagonizes the WNT pathway to maintain a neurogenic fate and, in contrast, regulates cycling of optic cup progenitors in a WNT-independent manner. Given that WNT signaling acting upstream of SOX2 has been implicated in the tumorigenicity of embryonic stem cell-derived retinal progenitor cells, our results distinguish the endogenous role of WNT signaling in early optic cup patterning and support a WNT-independent role for SOX2 in maintaining retinal progenitor cell proliferation. Electronic supplementary material The online version of this article (doi:10.1186/1749-8104-9-27) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Whitney E Heavner
- UNC Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
23
|
Xie BB, Zhang XM, Hashimoto T, Tien AH, Chen A, Ge J, Yang XJ. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter. PLoS One 2014; 9:e112175. [PMID: 25401462 PMCID: PMC4234374 DOI: 10.1371/journal.pone.0112175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs). The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Zhong-Shan Ophthalmic Center, Sun Yat-Sen University, Guangzhuo, China
| | - Xiang-Mei Zhang
- Jules Stein Eye Institute, University of California Los Angeles, California, United States of America
| | - Takao Hashimoto
- Jules Stein Eye Institute, University of California Los Angeles, California, United States of America
| | - Amy H. Tien
- Jules Stein Eye Institute, University of California Los Angeles, California, United States of America
| | - Andrew Chen
- Jules Stein Eye Institute, University of California Los Angeles, California, United States of America
| | - Jian Ge
- Zhong-Shan Ophthalmic Center, Sun Yat-Sen University, Guangzhuo, China
| | - Xian-Jie Yang
- Jules Stein Eye Institute, University of California Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Amin NM, Gibbs D, Conlon FL. Differential regulation of CASZ1 protein expression during cardiac and skeletal muscle development. Dev Dyn 2014; 243:948-56. [PMID: 24633745 DOI: 10.1002/dvdy.24126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The zinc-finger transcription factor CASZ1 is required for differentiation of a distinct population of cardiomyocytes during development. However, expression of Casz1 mRNA is detected throughout the developing heart, suggesting the spatial regulation of CASZ1 occurs at the protein level. Relatively little is known about posttranscriptional regulation of Casz1 in the heart. RESULTS We generated antibodies that specifically recognize CASZ1 in developing Xenopus embryos, and performed immunofluorescence analysis of CASZ1 during cardiac development. CASZ1 was detected throughout the developing myocardium. CASZ1 was restricted to terminally differentiated cardiomyocytes, and was down-regulated in cells that re-enter the cell cycle. We determined that CASZ1 expression correlated with terminal differentiation in cardiac muscle cells, skeletal muscle cells, and lymph-heart musculature. CONCLUSIONS This study indicates that spatially distinct expression of CASZ1 protein may be due to posttranscriptional control of Casz1 mRNA during cardiac development. The results of this study provide insights into the role of Casz1 in cardiac function and in the differentiation of other cell types, including skeletal muscle and lymph heart.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
25
|
Gao Z, Mao CA, Pan P, Mu X, Klein WH. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation. Dev Neurobiol 2014; 74:1123-40. [PMID: 24799426 DOI: 10.1002/dneu.22188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | | | | | |
Collapse
|
26
|
Chaya T, Omori Y, Kuwahara R, Furukawa T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J 2014; 33:1227-42. [PMID: 24797473 DOI: 10.1002/embj.201488175] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research Osaka University, Suita Osaka, Japan JST CREST, Suita Osaka, Japan Department of Developmental Biology, Osaka Bioscience Institute, Suita Osaka, Japan Kyoto University Graduate School of Medicine, Sakyo-ku Kyoto, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research Osaka University, Suita Osaka, Japan JST CREST, Suita Osaka, Japan Department of Developmental Biology, Osaka Bioscience Institute, Suita Osaka, Japan JST PRESTO, Suita Osaka, Japan
| | - Ryusuke Kuwahara
- Research Center for Ultrahigh Voltage Electron Microscopy Osaka University, Ibaraki Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research Osaka University, Suita Osaka, Japan JST CREST, Suita Osaka, Japan Department of Developmental Biology, Osaka Bioscience Institute, Suita Osaka, Japan
| |
Collapse
|
27
|
Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway. Oncogenesis 2014; 3:e96. [PMID: 24686726 PMCID: PMC4038393 DOI: 10.1038/oncsis.2014.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of Sonic hedgehog (Shh) signaling has been implicated in glioma pathogenesis. Yet, the role of this pathway in gliomagenesis remains controversial because of the lack of relevant animal models. Using the cytokeratin 5 promoter, we ectopically expressed a constitutively active zebrafish Smoothened (Smoa1) in neural progenitor cells and analyzed tumorigenic capacity of activated Shh signaling in both transient and stable transgenic fish. Transient transgenic fish overexpressing Smoa1 developed retinal and brain tumors, suggesting smoa1 is oncogenic in the zebrafish central nervous system (CNS). We further established stable transgenic lines that simultaneously developed optic pathway glioma (OPG) and various retinal tumors. In one of these lines, up to 80% of F1 and F2 fish developed tumors within 1 year of age. Microarray analysis of tumor samples showed upregulated expression of genes involved in the cell cycle, cancer signaling and Shh downstream targets ptc1, gli1 and gli2a. Tumors also exhibited specific gene signatures characteristic of radial glia and progenitor cells as transcriptions of radial glia genes cyp19a1b, s100β, blbp, gfap and the stem/progenitor genes nestin and sox2 were significantly upregulated. Overexpression of GFAP, S100β, BLBP and Sox2 was confirmed by immunofluorescence. We also detected overexpression of Mdm2 throughout the optic pathway in fish with OPG, therefore implicating the Mdm2–Tp53 pathway in glioma pathogenesis. In conclusion, we demonstrate that activated Shh signaling initiates tumorigenesis in the zebrafish CNS and provide the first OPG model not associated with neurofibromatosis 1.
Collapse
|
28
|
Goetz JJ, Farris C, Chowdhury R, Trimarchi JM. Making of a retinal cell: insights into retinal cell-fate determination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:273-321. [PMID: 24411174 DOI: 10.1016/b978-0-12-800097-7.00007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the process by which an uncommitted dividing cell produces particular specialized cells within a tissue remains a fundamental question in developmental biology. Many tissues are well suited for cell-fate studies, but perhaps none more so than the developing retina. Traditionally, experiments using the retina have been designed to elucidate the influence that individual environmental signals or transcription factors can have on cell-fate decisions. Despite a substantial amount of information gained through these studies, there is still much that we do not yet understand about how cell fate is controlled on a systems level. In addition, new factors such as noncoding RNAs and regulators of chromatin have been shown to play roles in cell-fate determination and with the advent of "omics" technology more factors will most likely be identified. In this chapter we summarize both the traditional view of retinal cell-fate determination and introduce some new ideas that are providing a challenge to the older way of thinking about the acquisition of cell fates.
Collapse
Affiliation(s)
- Jillian J Goetz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Rebecca Chowdhury
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
29
|
Pellissier LP, Alves CH, Quinn PM, Vos RM, Tanimoto N, Lundvig DMS, Dudok JJ, Hooibrink B, Richard F, Beck SC, Huber G, Sothilingam V, Garcia Garrido M, Le Bivic A, Seeliger MW, Wijnholds J. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis. PLoS Genet 2013; 9:e1003976. [PMID: 24339791 PMCID: PMC3854796 DOI: 10.1371/journal.pgen.1003976] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/09/2013] [Indexed: 01/22/2023] Open
Abstract
Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.
Collapse
Affiliation(s)
- Lucie P. Pellissier
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Celso Henrique Alves
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Peter M. Quinn
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Rogier M. Vos
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ditte M. S. Lundvig
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Jacobus J. Dudok
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Berend Hooibrink
- Department of Cell Biology and Histology, Amsterdam Medisch Centrum, Amsterdam, The Netherlands
| | - Fabrice Richard
- Aix-Marseille University, Developmental Biology Institute of Marseille Luminy (IBDML) and CNRS, UMR 6216, Marseille, France
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - André Le Bivic
- Aix-Marseille University, Developmental Biology Institute of Marseille Luminy (IBDML) and CNRS, UMR 6216, Marseille, France
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jan Wijnholds
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells. Proc Natl Acad Sci U S A 2013; 110:E4520-9. [PMID: 24191003 DOI: 10.1073/pnas.1303604110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective agent in multiple retinal degeneration animal models. Recently, CNTF has been evaluated in clinical trials for the inherited degenerative disease retinitis pigmentosa (RP) and for dry age-related macular degeneration (AMD). Despite its potential as a broad-spectrum therapeutic treatment for blinding diseases, the target cells of exogenous CNTF and its mechanism of action remain poorly understood. We have shown previously that constitutive expression of CNTF prevents photoreceptor death but alters the retinal transcriptome and suppresses visual function. Here, we use a lentivirus to deliver the same secreted human CNTF used in clinical trials to a mouse model of RP. We found that low levels of CNTF halt photoreceptor death, improve photoreceptor morphology, and correct opsin mislocalization. However, we did not detect corresponding improvement of retinal function as measured by the electroretinogram. Disruption of the cytokine receptor gp130 gene in Müller glia reduces CNTF-dependent photoreceptor survival and prevents phosphorylation of STAT3 and ERK in Müller glia and the rest of the retina. Targeted deletion of gp130 in rods also demolishes neuroprotection by CNTF and prevents further activation of Müller glia. Moreover, CNTF elevates the expression of LIF and endothelin 2, thus positively promoting Müller and photoreceptor interactions. We propose that exogenous CNTF initially targets Müller glia, and subsequently induces cytokines acting through gp130 in photoreceptors to promote neuronal survival. These results elucidate a cellular mechanism for exogenous CNTF-triggered neuroprotection and provide insight into the complex cellular responses induced by CNTF in diseased retinas.
Collapse
|
31
|
Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, Rechavi G, Ashery-Padan R. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One 2013; 8:e76489. [PMID: 24073291 PMCID: PMC3779171 DOI: 10.1371/journal.pone.0076489] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
The coupling between cell-cycle exit and onset of differentiation is a common feature throughout the developing nervous system, but the mechanisms that link these processes are mostly unknown. Although the transcription factor Pax6 has been implicated in both proliferation and differentiation of multiple regions within the central nervous system (CNS), its contribution to the transition between these successive states remains elusive. To gain insight into the role of Pax6 during the transition from proliferating progenitors to differentiating precursors, we investigated cell-cycle and transcriptomic changes occurring in Pax6 (-) retinal progenitor cells (RPCs). Our analyses revealed a unique cell-cycle phenotype of the Pax6-deficient RPCs, which included a reduced number of cells in the S phase, an increased number of cells exiting the cell cycle, and delayed differentiation kinetics of Pax6 (-) precursors. These alterations were accompanied by coexpression of factors that promote (Ccnd1, Ccnd2, Ccnd3) and inhibit (P27 (kip1) and P27 (kip2) ) the cell cycle. Further characterization of the changes in transcription profile of the Pax6-deficient RPCs revealed abrogated expression of multiple factors which are known to be involved in regulating proliferation of RPCs, including the transcription factors Vsx2, Nr2e1, Plagl1 and Hedgehog signaling. These findings provide novel insight into the molecular mechanism mediating the pleiotropic activity of Pax6 in RPCs. The results further suggest that rather than conveying a linear effect on RPCs, such as promoting their proliferation and inhibiting their differentiation, Pax6 regulates multiple transcriptional networks that function simultaneously, thereby conferring the capacity to proliferate, assume multiple cell fates and execute the differentiation program into retinal lineages.
Collapse
Affiliation(s)
- Chen Farhy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michael Elgart
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zehavit Shapira
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Varda Oron-Karni
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Yaron
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yotam Menuchin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Shh/Boc signaling is required for sustained generation of ipsilateral projecting ganglion cells in the mouse retina. J Neurosci 2013; 33:8596-607. [PMID: 23678105 DOI: 10.1523/jneurosci.2083-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling is an important determinant of vertebrate retinal ganglion cell (RGC) development. In mice, there are two major RGC populations: (1) the Islet2-expressing contralateral projecting (c)RGCs, which both produce and respond to Shh; and (2) the Zic2-expressing ipsilateral projecting RGCs (iRGCs), which lack Shh expression. In contrast to cRGCs, iRGCs, which are generated in the ventrotemporal crescent (VTC) of the retina, specifically express Boc, a cell adhesion molecule that acts as a high-affinity receptor for Shh. In Boc(-/-) mutant mice, the ipsilateral projection is significantly decreased. Here, we demonstrate that this phenotype results, at least in part, from the misspecification of a proportion of iRGCs. In Boc(-/-) VTC, the number of Zic2-positive RGCs is reduced, whereas more Islet2/Shh-positive RGCs are observed, a phenotype also detected in Zic2 and Foxd1 null embryos. Consistent with this observation, organization of retinal projections at the dorsal lateral geniculate nucleus is altered in Boc(-/-) mice. Analyses of the molecular and cellular consequences of introducing Shh into the developing VTC and Zic2 and Boc into the central retina indicate that Boc expression alone is insufficient to fully activate the ipsilateral program and that Zic2 regulates Shh expression. Taking these data together, we propose that expression of Boc in cells from the VTC is required to sustain Zic2 expression, likely by regulating the levels of Shh signaling from the nearby cRGCs. Zic2, in turn, directly or indirectly, counteracts Shh and Islet2 expression in the VTC and activates the ipsilateral program.
Collapse
|
33
|
Gordon PJ, Yun S, Clark AM, Monuki ES, Murtaugh LC, Levine EM. Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina. J Neurosci 2013; 33:12197-207. [PMID: 23884928 PMCID: PMC3721834 DOI: 10.1523/jneurosci.1494-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
The LIM-Homeodomain transcription factor Lhx2 is an essential organizer of early eye development and is subsequently expressed in retinal progenitor cells (RPCs). To determine its requirement in RPCs, we performed a temporal series of conditional inactivations in mice with the early RPC driver Pax6 α-Cre and the tamoxifen-inducible Hes1(CreERT2) driver. Deletion of Lhx2 caused a significant reduction of the progenitor population and a corresponding increase in neurogenesis. Precursor fate choice correlated with the time of inactivation; early and late inactivation led to the overproduction of retinal ganglion cells (RGCs) and rod photoreceptors, respectively. In each case, however, the overproduction was selective, occurring at the expense of other cell types and indicating a role for Lhx2 in generating cell type diversity. RPCs that persisted in the absence of Lhx2 continued to generate RGC precursors beyond their normal production window, suggesting that Lhx2 facilitates a transition in competence state. These results identify Lhx2 as a key regulator of RPC properties that contribute to the ordered production of multiple cell types during retinal tissue formation.
Collapse
Affiliation(s)
- Patrick J. Gordon
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
- Interdepartmental Program in Neuroscience, and
| | - Sanghee Yun
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Anna M. Clark
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Edwin S. Monuki
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84132, and
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
- Department of Neurobiology and Anatomy
| |
Collapse
|
34
|
Distinct neurogenic potential in the retinal margin and the pars plana of mammalian eye. J Neurosci 2012; 32:12797-807. [PMID: 22973003 DOI: 10.1523/jneurosci.0118-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Unlike many other vertebrates, a healthy mammalian retina does not grow throughout life and lacks a ciliary margin zone capable of actively generating new neurons. The isolation of stem-like cells from the ciliary epithelium has led to speculation that the mammalian retina and/or surrounding tissues may retain neurogenic potential capable of responding to retinal damage. Using genetically altered mouse lines with varying degrees of retinal ganglion cell loss, we show that the retinal margin responds to ganglion cell loss by prolonging specific neurogenic activity, as characterized by increased numbers of Atoh7(LacZ)-expressing cells. The extent of neurogenic activity correlated with the degree of ganglion cell deficiency. In the pars plana, but not the retinal margin, cells remain proliferative into adulthood, marking the junction of pars plana and retinal margin as a niche capable of producing proliferative cells in the mammalian retina and a potential cellular source for retinal regeneration.
Collapse
|
35
|
Rhee KD, Yu J, Zhao CY, Fan G, Yang XJ. Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis 2012; 3:e427. [PMID: 23171847 PMCID: PMC3542601 DOI: 10.1038/cddis.2012.165] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetic regulation of the genome is critical for the emergence of diverse cell lineages during development. To understand the role of DNA methylation during retinal network formation, we generated a mouse retinal-specific Dnmt1 deletion mutation from the onset of neurogenesis. In the hypomethylated Dnmt1-mutant retina, neural progenitor cells continue to proliferate, however, the cell cycle progression is altered, as revealed by an increased proportion of G1 phase cells. Despite production of all major retinal neuronal cell types in the Dnmt1-mutant retina, various postmitotic neurons show defective differentiation, including ectopic cell soma and aberrant dendritic morphologies. Specifically, the commitment of Dmnt1-deficient progenitors towards the photoreceptor fate is not affected by DNA hypomethylation, yet the initiation of photoreceptor differentiation is severely hindered, resulting in reduction and mislocalization of rhodopsin-expressing cells. In addition to compromised neuronal differentiation, Dnmt1 deficiency also leads to rapid cell death of photoreceptors and other types of neurons in the postnatal retina. These results indicate that Dnmt1-dependent DNA methylation is critical for expansion of the retinal progenitor pool, as well as for maturation and survival of postmitotic neurons.
Collapse
Affiliation(s)
- K-D Rhee
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
36
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
37
|
Cell fate determination in the vertebrate retina. Trends Neurosci 2012; 35:565-73. [PMID: 22704732 DOI: 10.1016/j.tins.2012.05.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/26/2012] [Accepted: 05/18/2012] [Indexed: 01/12/2023]
Abstract
The vertebrate retina is a well-characterized and tractable model for studying neurogenesis. Retinal neurons and glia are generated in a conserved sequence from a pool of multipotent progenitor cells, and numerous cell fate determinants for the different classes of retinal cell types have been identified. Here, we summarize several recent developments in the field that have advanced understanding of the regulation of multipotentiality and temporal competence of progenitors. We also discuss recent insights into the relative influence of lineage-based versus stochastic modes of cell fate determination. Enhancing and integrating knowledge of the molecular and genetic machinery underlying retinal development is critically important for understanding not only normal developmental mechanisms, but also therapeutic interventions aimed at restoring vision loss.
Collapse
|
38
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
39
|
Hambright D, Park KY, Brooks M, McKay R, Swaroop A, Nasonkin IO. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 2012; 18:920-36. [PMID: 22539871 PMCID: PMC3335781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 04/08/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To examine the potential of NIH-maintained human embryonic stem cell (hESC) lines TE03 and UC06 to differentiate into retinal progenitor cells (hESC-RPCs) using the noggin/Dkk-1/IGF-1/FGF9 protocol. An additional goal is to examine the in vivo dynamics of maturation and retinal integration of subretinal and epiretinal (vitreous space) hESC-RPC grafts without immunosuppression. METHODS hESCs were neuralized in vitro with noggin for 2 weeks and expanded to derive neuroepithelial cells (hESC-neural precursors, NPs). Wnt (Integration 1 and wingless) blocking morphogens Dickkopf-1 (Dkk-1) and Insulin-like growth factor 1 (IGF-1) were used to direct NPs to a rostral neural fate, and fibroblast growth factor 9 (FGF9)/fibroblast growth factor-basic (bFGF) were added to bias the differentiation of developing anterior neuroectoderm cells to neural retina (NR) rather than retinal pigment epithelium (RPE). Cells were dissociated and grafted into the subretinal and epiretinal space of young adult (4-6-week-old) mice (C57BL/6J x129/Sv mixed background). Remaining cells were replated for (i) immunocytochemical analysis and (ii) used for quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Mice were sacrificed 3 weeks or 3 months after grafting, and the grafts were examined by histology and immunohistochemistry for survival of hESC-RPCs, presence of mature neuronal and retinal markers, and the dynamics of in vivo maturation and integration into the host retina. RESULTS At the time of grafting, hESC-RPCs exhibited immature neural/neuronal immunophenotypes represented by nestin and neuronal class III β-tubulin, with about half of the cells positive for cell proliferation marker Kiel University -raised antibody number 67 (Ki67), and no recoverin-positive (recoverin [+]) cells. The grafted cells expressed eye field markers paired box 6 (PAX6), retina and anterior neural fold homeobox (RAX), sine oculis homeobox homolog 6 (SIX6), LIM homeobox 2 (LHX2), early NR markers (Ceh-10 homeodomain containing homolog [CHX10], achaete-scute complex homolog 1 [MASH1], mouse atonal homolog 5 [MATH5], neurogenic differentiation 1 [NEUROD1]), and some retinal cell fate markers (brain-specific homeobox/POU domain transcription factor 3B [BRN3B], prospero homeobox 1 [PROX1], and recoverin). The cells in the subretinal grafts matured to predominantly recoverin [+] phenotype by 3 months and survived in a xenogenic environment without immunosuppression as long as the blood-retinal barrier was not breached by the transplantation procedure. The epiretinal grafts survived but did not express markers of mature retinal cells. Retinal integration into the retinal ganglion cell (RGC) layer and the inner nuclear layer (INL) was efficient from the epiretinal but not subretinal grafts. The subretinal grafts showed limited ability to structurally integrate into the host retina and only in cases when NR was damaged during grafting. Only limited synaptogenesis and no tumorigenicity was observed in grafts. CONCLUSIONS Our studies show that (i) immunosuppression is not mandatory to xenogenic graft survival in the retina, (ii) the subretinal but not the epiretinal niche can promote maturation of hESC-RPCs to photoreceptors, and (iii) the hESC-RPCs from epiretinal but not subretinal grafts can efficiently integrate into the RGC layer and INL. The latter could be of value for long-lasting neuroprotection of retina in some degenerative conditions and glaucoma. Overall, our results provide new insights into the technical aspects associated with cell-based therapy in the retina.
Collapse
Affiliation(s)
- Dustin Hambright
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Kye-Yoon Park
- Laboratory of Molecular Biology and NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Ron McKay
- Laboratory of Molecular Biology and NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Igor O. Nasonkin
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
McNeill B, Perez-Iratxeta C, Mazerolle C, Furimsky M, Mishina Y, Andrade-Navarro MA, Wallace VA. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina. Mol Cell Neurosci 2012; 49:333-40. [PMID: 22281533 DOI: 10.1016/j.mcn.2011.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/07/2011] [Accepted: 12/15/2011] [Indexed: 11/26/2022] Open
Abstract
The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development.
Collapse
Affiliation(s)
- Brian McNeill
- Vision Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | | | |
Collapse
|
41
|
Sakagami K, Chen B, Nusinowitz S, Wu H, Yang XJ. PTEN regulates retinal interneuron morphogenesis and synaptic layer formation. Mol Cell Neurosci 2011; 49:171-83. [PMID: 22155156 DOI: 10.1016/j.mcn.2011.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 11/15/2022] Open
Abstract
The lipid phosphatase PTEN is a critical negative regulator of extracellular signal-induced PI3K activities, yet the roles of PTEN in the neural retina remain poorly understood. Here, we investigate the function of PTEN during retinal development. Deletion of Pten at the onset of neurogenesis in retinal progenitors results in the reduction of retinal ganglion cells and rod photoreceptors, but increased Müller glial genesis. In addition, PTEN deficiency leads to elevated phosphorylation of Akt, especially in the developing inner plexiform layer, where high levels of PTEN are normally expressed. In Pten mutant retinas, various subtypes of amacrine cells show severe dendritic overgrowth, causing specific expansion of the inner plexiform layer. However, the outer plexiform layer remains relatively undisturbed in the Pten deficient retina. Physiological analysis detects reduced rod function and augmented oscillatory potentials originating from amacrine cells in Pten mutants. Furthermore, deleting Pten or elevating Akt activity in individual amacrine cells is sufficient to disrupt dendritic arborization, indicating that Pten activity is required cell autonomously to control neuronal morphology. Moreover, inhibiting endogenous Akt activity attenuates inner plexiform layer formation in vitro. Together, these findings demonstrate that suppression of PI3K/Akt signaling by PTEN is crucial for proper neuronal differentiation and normal retinal network formation.
Collapse
Affiliation(s)
- Kiyo Sakagami
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Georgi SA, Reh TA. Dicer is required for the maintenance of notch signaling and gliogenic competence during mouse retinal development. Dev Neurobiol 2011; 71:1153-69. [PMID: 21542136 PMCID: PMC5373852 DOI: 10.1002/dneu.20899] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MicroRNAs (miRNAs) are 19-25 nucleotide RNAs that regulate messenger RNA translation and stability. Recently, we performed a conditional knockout (CKO) of the miRNA-processing enzyme Dicer during mouse retinal development and showed an essential role for miRNAs in the transition of retinal progenitors from an early to a late competence state (Georgi and Reh [2010]: J Neurosci 30:4048-4061). Notably, Dicer CKO progenitors failed to express Ascl1 and generated ganglion cells beyond their normal competence window. Because Ascl1 regulates multiple Notch signaling components, we hypothesized that Notch signaling is downregulated in Dicer CKO retinas. We show here that Notch signaling is severely reduced in Dicer CKO retinas, but that retinal progenitors still retain a low level of Notch signaling. By increasing Notch signaling in Dicer CKO progenitors through constitutive expression of the Notch intracellular domain (NICD), we show that transgenic rescue of Notch signaling has little effect on the competence of retinal progenitors or the enhanced generation of ganglion cells, suggesting that loss of Notch signaling is not a major determinant of these phenotypes. Nevertheless, transgenic NICD expression restored horizontal cells, suggesting an interaction between miRNAs and Notch signaling in the development of this cell type. Furthermore, while NICD overexpression leads to robust glial induction in control retinas, NICD overexpression was insufficient to drive Dicer-null retinal progenitors to a glial fate. Surprisingly, the presence of transgenic NICD expression did not prevent the differentiation of some types of retinal neurons, suggesting that Notch inactivation is not an absolute requirement for the initial stages of neuronal differentiation.
Collapse
Affiliation(s)
- Sean A Georgi
- Neurobiology and Behavior Program, Department of Biological Structure, School of Medicine, University of Washington, Seattle, USA
| | | |
Collapse
|
43
|
Bibliowicz J, Gross JM. Ectopic proliferation contributes to retinal dysplasia in the juvenile zebrafish patched2 mutant eye. Invest Ophthalmol Vis Sci 2011; 52:8868-77. [PMID: 22003118 DOI: 10.1167/iovs.11-8033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Patched is a well-studied tumor suppressor and negative regulator of the Hedgehog (Hh) pathway. Earlier work in this laboratory has shown that embryonic zebrafish patched2 (ptc2) mutant retinas possess an expanded ciliary marginal zone (CMZ) and phenotypes similar to those in human patients with basal cell naevus syndrome (BCNS), a congenital disorder linked to mutations in the human PTCH gene. This study extends the analysis of retinal structure and homeostasis in ptc2-/- mutants to juvenile stages, to determine whether Patched 2 function is essential in the postembryonic eye. METHODS Histologic, immunohistochemical, and molecular analyses were used to characterize retinal defects in the 6-week-old juvenile ptc2-/- retina. RESULTS Juvenile ptc2-/- mutants exhibited peripheral retinal dysplasias that included the presence of ectopic neuronal clusters in the inner nuclear layer (INL) and regions of disrupted retinal lamination. Retinal dysplasias were locally associated with ectopic proliferation. BrdU/EdU labeling and immunohistochemistry assays demonstrated that a population of ectopically proliferating cells gave rise to the ectopic neuronal clusters in the INL of ptc2-/- mutants and that this contributed to retinal dysplasia in the mutant eye. CONCLUSIONS These results demonstrate a direct link between overproliferation and retinal dysplasia in the ptc2-/- juvenile retina and establish ectopic proliferation as the likely cellular underpinning of retinal dysplasia in juvenile ptc2-/- mutants.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
44
|
Atkinson-Leadbeater K, McFarlane S. Extrinsic factors as multifunctional regulators of retinal ganglion cell morphogenesis. Dev Neurobiol 2011; 71:1170-85. [DOI: 10.1002/dneu.20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Mustafi D, Kevany BM, Genoud C, Okano K, Cideciyan AV, Sumaroka A, Roman AJ, Jacobson SG, Engel A, Adams MD, Palczewski K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. FASEB J 2011; 25:3157-76. [PMID: 21659555 PMCID: PMC3157681 DOI: 10.1096/fj.11-186767] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/26/2011] [Indexed: 11/11/2022]
Abstract
Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl(-/-)) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl(-/-) mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl(-/-) retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl(-/-) retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl(-/-) mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Leto K, Bartolini A, Di Gregorio A, Imperiale D, De Luca A, Parmigiani E, Filipkowski RK, Kaczmarek L, Rossi F. Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation. Development 2011; 138:3463-72. [PMID: 21771816 DOI: 10.1242/dev.064378] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise spatiotemporal sequences. To investigate the mechanisms that regulate the specification of distinct interneuron phenotypes, we examined mice lacking the G1 phase-active cyclin D2. It has been reported that these mice show severe reduction of stellate cells, the last generated interneuron subtype. We found that loss of cyclin D2 actually impairs the whole process of interneuron genesis. In the mutant cerebella, progenitors of the prospective white matter show reduced proliferation rates and enhanced tendency to leave the cycle, whereas young postmitotic interneurons undergo severe delay of their maturation and migration. As a consequence, the progenitor pool is precociously exhausted and the number of interneurons is significantly reduced, although molecular layer interneurons are more affected than those of granular layer or deep nuclei. The characteristic inside-out sequence of interneuron placement in the cortical layers is also reversed, so that later born cells occupy deeper positions than earlier generated ones. Transplantation experiments show that the abnormalities of cyclin D2(-/-) interneurons are largely caused by cell-autonomous mechanisms. Therefore, cyclin D2 is not required for the specification of particular interneuron subtypes. Loss of this protein, however, disrupts regulatory mechanisms of cell cycle dynamics that are required to determine the numbers of interneurons of different types and impairs their rhythm of maturation and integration in the cerebellar circuitry.
Collapse
Affiliation(s)
- Ketty Leto
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suppressor of fused is required to maintain the multipotency of neural progenitor cells in the retina. J Neurosci 2011; 31:5169-80. [PMID: 21451052 DOI: 10.1523/jneurosci.5495-10.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The morphogen sonic hedgehog (Shh) plays a crucial role in development of the CNS, including the neural retina. Suppressor of fused (Sufu) has been recently identified as a critical regulator of Hh signaling in mammals. However, the precise roles that Sufu plays in the regulation of proliferation and cell-fate decisions in neural progenitors is unknown. Here, we have addressed these questions by conditionally deleting Sufu in mouse multipotent retinal progenitor cells (RPCs). Sufu deletion in RPCs results in transient increases in Hh activity and proliferation followed by developmentally premature cell-cycle exit. Importantly, we demonstrate a novel role for Sufu in the maintenance of multipotency in RPCs. Sufu-null RPCs downregulate transcription factors required to specify or maintain RPC identity (Rax, Vsx2) and multipotency (Pax6) but continue to express the neural progenitor marker Sox2. These cells fail to express retinal lineage-specific transcription factors, such as Math5, and adopt an amacrine or horizontal cell fate at the expense of all other classes of retinal neurons. Genetic elimination of Gli2 in Sufu-null RPCs attenuates Hh pathway activity and restores multipotency in neural progenitors. These data provide novel evidence that Sufu-mediated antagonism of Hh/Gli2 signaling is required to maintain RPC multipotency and identity.
Collapse
|
48
|
Wallace VA. Concise Review: Making a Retina-From the Building Blocks to Clinical Applications. Stem Cells 2011; 29:412-7. [DOI: 10.1002/stem.602] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Davis N, Mor E, Ashery-Padan R. Roles for Dicer1 in the patterning and differentiation of the optic cup neuroepithelium. Development 2011; 138:127-38. [DOI: 10.1242/dev.053637] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic ocular neuroepithilium generates a myriad of cell types, including the neuroretina, the pigmented epithelium, the ciliary and iris epithelia, and the iris smooth muscles. As in other regions of the developing nervous system, the generation of these various cell types requires a coordinated sequence of patterning, specification and differentiation events. We investigated the roles of microRNAs (miRNAs) in the development of optic cup (OC)-derived structures. We inactivated Dicer1, a key mediator of miRNA biosynthesis, within the OC in overlapping yet distinct spatiotemporal patterns. Ablation of Dicer1 in the inner layer of the OC resulted in patterning alteration, particularly at the most distal margins. Following loss of Dicer1, this region generated a cryptic population of cells with a mixed phenotype of neuronal and ciliary body (CB) progenitors. Notably, inactivation of Dicer1 in the retinal progenitors further resulted in abrogated neurogenesis, with prolongation of ganglion cell birth and arrested differentiation of other neuronal subtypes, including amacrine and photoreceptor cells. These alterations were accompanied by changes in the expression of Notch and Hedgehog signaling components, indicating the sensitivity of the pathways to miRNA activity. Moreover, this study revealed the requirement of miRNAs for morphogenesis of the iris and for the regulation of CB cell type proliferation and differentiation. Together, analysis of the three genetic models revealed novel, stage-dependent roles for miRNAs in the development of the ocular sub-organs, which are all essential for normal vision.
Collapse
Affiliation(s)
- Noa Davis
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Mor
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Ashery-Padan
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
50
|
Yu J, Lei K, Zhou M, Craft CM, Xu G, Xu T, Zhuang Y, Xu R, Han M. KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Genet 2010; 20:1061-73. [PMID: 21177258 DOI: 10.1093/hmg/ddq549] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear movement relative to cell bodies is a fundamental process during certain aspects of mammalian retinal development. During the generation of photoreceptor cells in the cell division cycle, the nuclei of progenitors oscillate between the apical and basal surfaces of the neuroblastic layer (NBL). This process is termed interkinetic nuclear migration (INM). Furthermore, newly formed photoreceptor cells migrate and form the outer nuclear layer (ONL). In the current study, we demonstrated that a KASH domain-containing protein, Syne-2/Nesprin-2, as well as SUN domain-containing proteins, SUN1 and SUN2, play critical roles during INM and photoreceptor cell migration in the mouse retina. A deletion mutation of Syne-2/Nesprin-2 or double mutations of Sun1 and Sun2 caused severe reduction of the thickness of the ONL, mislocalization of photoreceptor nuclei and profound electrophysiological dysfunction of the retina characterized by a reduction of a- and b-wave amplitudes. We also provide evidence that Syne-2/Nesprin-2 forms complexes with either SUN1 or SUN2 at the nuclear envelope to connect the nucleus with dynein/dynactin and kinesin molecular motors during the nuclear migrations in the retina. These key retinal developmental signaling results will advance our understanding of the mechanism of nuclear migration in the mammalian retina.
Collapse
Affiliation(s)
- Juehua Yu
- Institute of Developmental Biology and Molecular Medicine, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|