1
|
Khosravi R, Beigoli S, Behrouz S, Amirahmadi S, Sarbaz P, Hosseini M, Sarir H, Boskabady MH. The inhibitory influence of carvacrol on behavioral modifications, brain oxidation, and general inflammation triggered by paraquat exposure through inhalation. Neurotoxicology 2024; 105:184-195. [PMID: 39393544 DOI: 10.1016/j.neuro.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The current study investigated how carvacrol (C) can prevent behavioral and brain oxidative changes, along with systemic inflammation caused by inhaled paraquat (PQ). Control rats exposed to saline solution, whereas six rat groups were subjected to PQ aerosols at a concentration of 54 mg/m3 in 16 days. The PQ-exposed groups received saline (PQ group), C at dosages of 20 (C-L) and 80 mg/kg/day (C-H), dexamethasone at a dosage of 0.03 mg/kg/day, pioglitazone at dose of 5 and 10 mg/kg/day (Pio-L and Pio-H), and a combination of C-L + Pio-L. Various parameters were assessed following the end of the treatment duration. There were marked elevation in total and differential white blood cell counts (WBCs), and malondialdehyde levels in the blood, hippocampus, and cerebral tissue but, thiol, superoxide dismutase (SOD), and catalase (CAT) exhibited a notable decrease (p < 0.05 to p < 0.001). The escape delay and traveled distance exhibited enhancement, however, on the probe day, the duration spent in the target quadrant and the time taken to enter the dark room at 3, 24, 48, and 72 hours post an electrical shock, showed a reduction in the PQ group (P<0.05 to P<0.001). Inhaled PQ-induced changes were significantly improved in C, Pio, Dexa, and C-L + Pio-L treated groups (P<0.05 to P<0.001). The effects of C-L + Pio-L on most measured variables were higher than C-L and Pio-L (P<0.05 to P<0.001). C improved PQ-induced changes similar to dexamethasone and C-L showed additive effects when administered in combination with Pio.
Collapse
Affiliation(s)
- Reyhaneh Khosravi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Sarbaz
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Abstract
Playing a musical instrument engages numerous cognitive abilities, including sensory perception, selective attention, and short-term memory. Mounting evidence indicates that engaging these cognitive functions during musical training will improve performance of these same functions. Yet, it remains unclear the extent these benefits may extend to nonmusical tasks, and what neural mechanisms may enable such transfer. Here, we conducted a preregistered randomized clinical trial where nonmusicians underwent 8 wk of either digital musical rhythm training or word search as control. Only musical rhythm training placed demands on short-term memory, as well as demands on visual perception and selective attention, which are known to facilitate short-term memory. As hypothesized, only the rhythm training group exhibited improved short-term memory on a face recognition task, thereby providing important evidence that musical rhythm training can benefit performance on a nonmusical task. Analysis of electroencephalography data showed that neural activity associated with sensory processing and selective attention were unchanged by training. Rather, rhythm training facilitated neural activity associated with short-term memory encoding, as indexed by an increased P3 of the event-related potential to face stimuli. Moreover, short-term memory maintenance was enhanced, as evidenced by increased two-class (face/scene) decoding accuracy. Activity from both the encoding and maintenance periods each highlight the right superior parietal lobule (SPL) as a source for training-related changes. Together, these results suggest musical rhythm training may improve memory for faces by facilitating activity within the SPL to promote how memories are encoded and maintained, which can be used in a domain-general manner to enhance performance on a nonmusical task.
Collapse
|
3
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
4
|
Jargow J, Zwosta K, Korb FM, Ruge H, Wolfensteller U. Low-Frequency TMS Results in Condition-Related Dynamic Activation Changes of Stimulated and Contralateral Inferior Parietal Lobule. Front Hum Neurosci 2021; 15:684367. [PMID: 34366812 PMCID: PMC8342925 DOI: 10.3389/fnhum.2021.684367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
Non-invasive brain stimulation is a promising approach to study the causal relationship between brain function and behavior. However, it is difficult to interpret behavioral null results as dynamic brain network changes have the potential to prevent stimulation from affecting behavior, ultimately compensating for the stimulation. The present study investigated local and remote changes in brain activity via functional magnetic resonance imaging (fMRI) after offline disruption of the inferior parietal lobule (IPL) or the vertex in human participants via 1 Hz repetitive transcranial magnetic stimulation (rTMS). Since the IPL acts as a multimodal hub of several networks, we implemented two experimental conditions in order to robustly engage task-positive networks, such as the fronto-parietal control network (on-task condition) and the default mode network (off-task condition). The condition-dependent neural after-effects following rTMS applied to the IPL were dynamic in affecting post-rTMS BOLD activity depending on the exact time-window. More specifically, we found that 1 Hz rTMS applied to the right IPL led to a delayed activity increase in both, the stimulated and the contralateral IPL, as well as in other brain regions of a task-positive network. This was markedly more pronounced in the on-task condition suggesting a condition-related delayed upregulation. Thus together, our results revealed a dynamic compensatory reorganization including upregulation and intra-network compensation which may explain mixed findings after low-frequency offline TMS.
Collapse
Affiliation(s)
- Janine Jargow
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Katharina Zwosta
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Franziska M Korb
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Ruge
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Uta Wolfensteller
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Hwang K, Shine JM, Cellier D, D'Esposito M. The Human Intraparietal Sulcus Modulates Task-Evoked Functional Connectivity. Cereb Cortex 2021; 30:875-887. [PMID: 31355407 DOI: 10.1093/cercor/bhz133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022] Open
Abstract
Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.
Collapse
Affiliation(s)
- Kai Hwang
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA.,Department of Psychological and Brain Sciences and the Iowa Neuroscience Institute, The University of Iowa, Iowa, IA, USA
| | - James M Shine
- Department of Psychology, Stanford University, Palo Alto, CA, USA.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Dillan Cellier
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA.,Department of Psychological and Brain Sciences and the Iowa Neuroscience Institute, The University of Iowa, Iowa, IA, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Zhao Y, Kuai S, Zanto TP, Ku Y. Neural Correlates Underlying the Precision of Visual Working Memory. Neuroscience 2020; 425:301-311. [PMID: 31812661 DOI: 10.1016/j.neuroscience.2019.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023]
Abstract
The neural mechanisms associated with the limited capacity of working memory (WM) has long been studied, but it is still unclear which neural regions are associated with the precision of visual WM. Here, an orientation recall task for estimating the trial-wise precision of visual WM was performed and then repeated two weeks later in an fMRI scanner. Results showed that activity in frontal and parietal regions during WM maintenance scaled with WM load, but not with the precision of WM (i.e., recall error in radians). Conversely, activity in the lateral occipital complex (LOC) during WM maintenance was not affected by memory load, but rather, correlated with WM precision on a trial-by-trial basis. Moreover, activity in LOC also correlated with the individual participant's precision of WM from a separate behavioral experiment. Interestingly, a region within the prefrontal cortex, the inferior frontal junction (IFJ), exhibited greater functional connectivity with LOC when the WM load increased. Together, our findings provide unique evidence that the LOC supports visual WM precision, while communication between the IFJ and LOC varies based on WM load demands. These results suggest an intriguing possibility that distinct neural mechanisms may be associated with general content (load) or detailed information (precision) of WM.
Collapse
Affiliation(s)
- Yijie Zhao
- The Shanghai Key Lab of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Peng Cheng Laboratory, Shenzhen 518055, China; Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuguang Kuai
- The Shanghai Key Lab of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Theodore P Zanto
- Neuroscape and the Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yixuan Ku
- The Shanghai Key Lab of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Peng Cheng Laboratory, Shenzhen 518055, China; Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai 200062, China.
| |
Collapse
|
7
|
Agnew ZK, Banissy MJ, McGettigan C, Walsh V, Scott SK. Investigating the Neural Basis of Theta Burst Stimulation to Premotor Cortex on Emotional Vocalization Perception: A Combined TMS-fMRI Study. Front Hum Neurosci 2018; 12:150. [PMID: 29867402 PMCID: PMC5962765 DOI: 10.3389/fnhum.2018.00150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/04/2018] [Indexed: 12/01/2022] Open
Abstract
Previous studies have established a role for premotor cortex in the processing of auditory emotional vocalizations. Inhibitory continuous theta burst transcranial magnetic stimulation (cTBS) applied to right premotor cortex selectively increases the reaction time to a same-different task, implying a causal role for right ventral premotor cortex (PMv) in the processing of emotional sounds. However, little is known about the functional networks to which PMv contribute across the cortical hemispheres. In light of these data, the present study aimed to investigate how and where in the brain cTBS affects activity during the processing of auditory emotional vocalizations. Using functional neuroimaging, we report that inhibitory cTBS applied to the right premotor cortex (compared to vertex control site) results in three distinct response profiles: following stimulation of PMv, widespread frontoparietal cortices, including a site close to the target site, and parahippocampal gyrus displayed an increase in activity, whereas the reverse response profile was apparent in a set of midline structures and right IFG. A third response profile was seen in left supramarginal gyrus in which activity was greater post-stimulation at both stimulation sites. Finally, whilst previous studies have shown a condition specific behavioral effect following cTBS to premotor cortex, we did not find a condition specific neural change in BOLD response. These data demonstrate a complex relationship between cTBS and activity in widespread neural networks and are discussed in relation to both emotional processing and the neural basis of cTBS.
Collapse
Affiliation(s)
- Zarinah K Agnew
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Otolaryngology-Head & Neck Surgery Clinic, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J Banissy
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | | | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
8
|
FitzGerald THB, Hämmerer D, Friston KJ, Li SC, Dolan RJ. Sequential inference as a mode of cognition and its correlates in fronto-parietal and hippocampal brain regions. PLoS Comput Biol 2017; 13:e1005418. [PMID: 28486504 PMCID: PMC5441656 DOI: 10.1371/journal.pcbi.1005418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/23/2017] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Normative models of human cognition often appeal to Bayesian filtering, which provides optimal online estimates of unknown or hidden states of the world, based on previous observations. However, in many cases it is necessary to optimise beliefs about sequences of states rather than just the current state. Importantly, Bayesian filtering and sequential inference strategies make different predictions about beliefs and subsequent choices, rendering them behaviourally dissociable. Taking data from a probabilistic reversal task we show that subjects’ choices provide strong evidence that they are representing short sequences of states. Between-subject measures of this implicit sequential inference strategy had a neurobiological underpinning and correlated with grey matter density in prefrontal and parietal cortex, as well as the hippocampus. Our findings provide, to our knowledge, the first evidence for sequential inference in human cognition, and by exploiting between-subject variation in this measure we provide pointers to its neuronal substrates. When studying human cognition, it is often assumed that agents form and update beliefs only about the current state of the world, an approach known as Bayesian filtering. However, in many situations there are advantages to making inferences about the most likely sequence of states that have occurred, which involves simultaneously updating beliefs about the present and the past, based on incoming information. Currently, very little is known about whether humans adopt such sequential inference strategies, and if they do, about the neuronal mechanisms involved. We addressed this by applying computational modelling to data collected during a probabilistic reversal task. At a group level, subjects’ behaviour showed clear evidence of sequential inference, and between-subject differences in the strategies adopted were reflected in variations in brain structure in the prefrontal and parietal cortices, as well as the hippocampus. Our results provide new insight into the strategies employed in human cognition, as well as the neuronal substrates of sequential inference.
Collapse
Affiliation(s)
- Thomas H. B. FitzGerald
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Max Planck – UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
- Department of Psychology, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - Dorothea Hämmerer
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden, Dresden, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karl J. Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden, Dresden, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Raymond J. Dolan
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Max Planck – UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
9
|
Reprogramming of orientation columns in visual cortex: a domino effect. Sci Rep 2015; 5:9436. [PMID: 25801392 PMCID: PMC4371149 DOI: 10.1038/srep09436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 02/06/2023] Open
Abstract
Cortical organization rests upon the fundamental principle that neurons sharing similar properties are co-located. In the visual cortex, neurons are organized into orientation columns. In a column, most neurons respond optimally to the same axis of an oriented edge, that is, the preferred orientation. This orientation selectivity is believed to be absolute in adulthood. However, in a fully mature brain, it has been established that neurons change their selectivity following sensory experience or visual adaptation. Here, we show that after applying an adapter away from the tested cells, neurons whose receptive fields were located remotely from the adapted site also exhibit a novel selectivity in spite of the fact that they were not adapted. These results indicate a robust reconfiguration and remapping of the orientation domains with respect to each other thus removing the possibility of an orientation hole in the new hypercolumn. These data suggest that orientation columns transcend anatomy, and are almost strictly functionally dynamic.
Collapse
|
10
|
Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation. J Neurosci 2015; 34:12481-9. [PMID: 25209286 DOI: 10.1523/jneurosci.4931-13.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive control is thought to rely upon a set of distributed brain regions within frontoparietal cortex, but the functional contributions of these regions remain elusive. Here, we investigated the disruptive effects of transcranial magnetic stimulation (TMS) over the human prefrontal and parietal cortices in task preparation at different abstraction levels. While participants completed a task-switching paradigm that assessed the reconfiguration of task goals and response sets independently, TMS was applied over the left inferior frontal junction (IFJ) and over the left intraparietal sulcus (IPS) during task preparation. In Experiment 1, TMS over the IFJ caused interference with the updating of task goals, while leaving the updating of response sets unaffected. In Experiment 2, TMS over the IPS created the opposite pattern of results, perturbing only the ability to update response sets, but not task goals. Experiment 3 furthermore revealed that TMS over the IPS interfered with task goal updating when the pulses are delivered at a later point in time during preparation. This dissociation of abstract and action-related components not only reveals distinct cognitive control processes during task preparation, but also sheds new light on how prefrontal and parietal areas might work in concert to support flexible and goal-oriented control of behavior.
Collapse
|
11
|
Chadick JZ, Zanto TP, Gazzaley A. Structural and functional differences in medial prefrontal cortex underlie distractibility and suppression deficits in ageing. Nat Commun 2014; 5:4223. [PMID: 24979364 PMCID: PMC4088291 DOI: 10.1038/ncomms5223] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
Older adults experience deficits in working memory (WM) that are acutely exacerbated by the presence of distracting information. Human neurophysiological studies have revealed that these changes are accompanied by a diminished ability to suppress visual cortical activity associated with task-irrelevant information. Although this is often attributed to deficits in top-down control from a prefrontal cortical source, this has not yet been directly demonstrated. Here we evaluate the neural basis of distraction’s negative impact on WM and the impairment in neural suppression in older adults by performing structural and functional MRIs while older participants engage in tasks that require remembering relevant visual stimuli in the context of overlapping irrelevant stimuli. Analysis supports both an age-related distraction effect and neural suppression deficit, and extends our understanding by revealing an alteration in functional connectivity between visual cortices and a region in the default network, the medial prefrontal cortex (mPFC). Moreover, within the older population, the magnitude of WM distractibility and neural suppression are both associated with individual differences in cortical volume and activity of the mPFC, as well as its associated white-matter tracts.
Collapse
Affiliation(s)
- James Z Chadick
- Department of Neurology, Physiology and Psychiatry, Center for Integrative Neuroscience, University of California, San Francisco, California 94158, USA
| | - Theodore P Zanto
- Department of Neurology, Physiology and Psychiatry, Center for Integrative Neuroscience, University of California, San Francisco, California 94158, USA
| | - Adam Gazzaley
- Department of Neurology, Physiology and Psychiatry, Center for Integrative Neuroscience, University of California, San Francisco, California 94158, USA
| |
Collapse
|