1
|
Li MQ, Lu XY, Yao JY, Zou GJ, Zeng ZH, Zhang LX, Zhou SF, Chen ZR, Zhao TS, Guo ZR, Cui YH, Li F, Li CQ. LASP1 in the nucleus accumbens modulates methamphetamine-induced conditioned place preference in mice. Neurochem Int 2024; 180:105884. [PMID: 39419179 DOI: 10.1016/j.neuint.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Methamphetamine (METH) is a highly addictive and widely abused drug that causes complex adaptive changes in the brain's reward system, such as the nucleus accumbens (NAc). LASP1 (LIM and SH 3 domain protein 1) as an actin-binding protein, regulates synaptic plasticity. However, the role and mechanism by which NAc LASP1 contributes to METH addiction remains unclear. In this study, adult male C57BL/6J mice underwent repeated METH exposure or METH-induced conditioned place preference (CPP). Western blotting and immunohistochemistry were used to determine LASP1 expression in the NAc. Furthermore, LASP1 knockdown or overexpression using adeno-associated virus (AAV) administration via stereotactic injection into the NAc was used to observe the corresponding effects on CPP. We found that repeated METH exposure and METH-induced CPP upregulated LASP1 expression in the NAc. LASP1 silencing in the NAc reversed METH-induced CPP and reduced PSD95, NR2A, and NR2B expression, whereas LASP1 overexpression in the NAc enhanced CPP acquisition, accompanied by increased PSD95, NR2A, and NR2B expression. Our findings demonstrate an important role of NAc LASP1 in modulating METH induced drug-seeking behavior and the underlying mechanism may be related to regulate the expression of synapse-associated proteins in the NAc. These results reveal a novel molecular regulator of the actions of METH on the NAc and provide a new strategy for treating METH addiction.
Collapse
Affiliation(s)
- Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| |
Collapse
|
2
|
Yu H, Li X, Zhang Q, Geng L, Su B, Wang Y. miR-143-3p modulates depressive-like behaviors via Lasp1 in the mouse ventral hippocampus. Commun Biol 2024; 7:944. [PMID: 39098885 PMCID: PMC11298515 DOI: 10.1038/s42003-024-06639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Depression is a prevalent and intricate mental disorder. The involvement of small RNA molecules, such as microRNAs in the pathogenesis and neuronal mechanisms underlying the depression have been documented. Previous studies have demonstrated the involvement of microRNA-143-3p (miR-143-3p) in the process of fear memory and pathogenesis of ischemia; however, the relationship between miR-143-3p and depression remains poorly understood. Here we utilized two kinds of mouse models to investigate the role of miR-143-3p in the pathogenesis of depression. Our findings reveal that the expression of miR-143-3p is upregulated in the ventral hippocampus (VH) of mice subjected to chronic restraint stress (CRS) or acute Lipopolysaccharide (LPS) treatment. Inhibiting the expression of miR-143-3p in the VH effectively alleviates depressive-like behaviors in CRS and LPS-treated mice. Furthermore, we identify Lasp1 as one of the downstream target genes regulated by miR-143-3p. The miR-143-3p/Lasp1 axis primarily affects the occurrence of depressive-like behaviors in mice by modulating synapse numbers in the VH. Finally, miR-143-3p/Lasp1-induced F-actin change is responsible for the synaptic number variations in the VH. In conclusion, this study enhances our understanding of microRNA-mediated depression pathogenesis and provides novel prospects for developing therapeutic approaches for this intractable mood disorder.
Collapse
Affiliation(s)
- Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaobing Li
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China
| | - Qiyao Zhang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
| | - Lian Geng
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
| | - Yue Wang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China.
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China.
| |
Collapse
|
3
|
Xu R, Jin Y, Tang S, Wang W, Sun YE, Liu Y, Zhang W, Hou B, Huang Y, Ma Z. Association between single nucleotide variants and severe chronic pain in older adult patients after lower extremity arthroplasty. J Orthop Surg Res 2023; 18:184. [PMID: 36895017 PMCID: PMC9999576 DOI: 10.1186/s13018-023-03683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Hip or knee osteoarthritis (OA) is one of the main causes of disability worldwide and occurs mostly in the older adults. Total hip or knee arthroplasty is the most effective method to treat OA. However, severe postsurgical pain leading to a poor prognosis. So, investigating the population genetics and genes related to severe chronic pain in older adult patients after lower extremity arthroplasty is helpful to improve the quality of treatment. METHODS We collected blood samples from elderly patients who underwent lower extremity arthroplasty from September 2020 to February 2021 at the Drum Tower Hospital Affiliated to Nanjing University Medical School. The enrolled patients provided measures of pain intensity using the numerical rating scale on the 90th day after surgery. Patients were divided into the case group (Group A) and the control group (Group B) including 10 patients respectively by the numerical rating scale. DNA was isolated from the blood samples of the two groups for whole-exome sequencing. RESULTS In total, 661 variants were identified in the 507 gene regions that were significantly different between both groups (P < 0.05), including CASP5, RASGEF1A, CYP4B1, etc. These genes are mainly involved in biological processes, including cell-cell adhesion, ECM-receptor interaction, metabolism, secretion of bioactive substances, ion binding and transport, regulation of DNA methylation, and chromatin assembly. CONCLUSIONS The current study shows some variants within genes are significantly associated with severe postsurgical chronic pain in older adult patients after lower extremity arthroplasty, indicating a genetic predisposition for chronic postsurgical pain. The study was registered according to ICMJE guidelines. The trial registration number is ChiCTR2000031655 and registration date is April 6th, 2020.
Collapse
Affiliation(s)
- Rui Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yinan Jin
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Suhong Tang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wenwen Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Butt E, Howard CM, Raman D. LASP1 in Cellular Signaling and Gene Expression: More than Just a Cytoskeletal Regulator. Cells 2022; 11:cells11233817. [PMID: 36497077 PMCID: PMC9741313 DOI: 10.3390/cells11233817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biochemistry II, University Clinic Wuerzburg, 97080 Wuerzburg, Germany
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| | - Cory M. Howard
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| |
Collapse
|
5
|
Rodriguez JM, Pozo F, Cerdán-Vélez D, Di Domenico T, Vázquez J, Tress M. APPRIS: selecting functionally important isoforms. Nucleic Acids Res 2022; 50:D54-D59. [PMID: 34755885 PMCID: PMC8728124 DOI: 10.1093/nar/gkab1058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
APPRIS (https://appris.bioinfo.cnio.es) is a well-established database housing annotations for protein isoforms for a range of species. APPRIS selects principal isoforms based on protein structure and function features and on cross-species conservation. Most coding genes produce a single main protein isoform and the principal isoforms chosen by the APPRIS database best represent this main cellular isoform. Human genetic data, experimental protein evidence and the distribution of clinical variants all support the relevance of APPRIS principal isoforms. APPRIS annotations and principal isoforms have now been expanded to 10 model organisms. In this paper we highlight the most recent updates to the database. APPRIS annotations have been generated for two new species, cow and chicken, the protein structural information has been augmented with reliable models from the EMBL-EBI AlphaFold database, and we have substantially expanded the confirmatory proteomics evidence available for the human genome. The most significant change in APPRIS has been the implementation of TRIFID functional isoform scores. TRIFID functional scores are assigned to all splice isoforms, and APPRIS uses the TRIFID functional scores and proteomics evidence to determine principal isoforms when core methods cannot.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Tomás Di Domenico
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| |
Collapse
|
6
|
Axelsson E, Ljungvall I, Bhoumik P, Conn LB, Muren E, Ohlsson Å, Olsen LH, Engdahl K, Hagman R, Hanson J, Kryvokhyzha D, Pettersson M, Grenet O, Moggs J, Del Rio-Espinola A, Epe C, Taillon B, Tawari N, Mane S, Hawkins T, Hedhammar Å, Gruet P, Häggström J, Lindblad-Toh K. The genetic consequences of dog breed formation-Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet 2021; 17:e1009726. [PMID: 34473707 PMCID: PMC8412370 DOI: 10.1371/journal.pgen.1009726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity. As a consequence of selective breeding, specific disease-causing mutations have become more frequent in certain dog breeds. Whether the breeding practice also resulted in a general increase in the overall number of disease-causing mutations per dog genome is however not clear. To address this question, we compare the amount of harmful, potentially disease-causing, mutations in dogs from eight common breeds that have experienced varying degrees of intense selective breeding. We find that individuals belonging to the breed affected by the most intense breeding—cavalier King Charles spaniel (cKCs)—carry more harmful variants than other breeds, indicating that past breeding practices may have increased the overall levels of harmful genetic variation in dogs. The most common disease in cKCs is myxomatous mitral valve disease (MMVD). To identify variants linked to this disease we next characterize mutations that are common in cKCs, but rare in other breeds, and then investigate if these mutations can predict MMVD in dachshunds. We find that variants that regulate the expression of the gene NEBL in papillary muscles may increase the risk of the disease, indicating that loss of papillary muscle integrity could contribute to the development of MMVD.
Collapse
Affiliation(s)
- Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Priyasma Bhoumik
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Laura Bas Conn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Muren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olivier Grenet
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Christian Epe
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Bruce Taillon
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Nilesh Tawari
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Shrinivas Mane
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Troy Hawkins
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Cui YH, Fu A, Wang XQ, Tu BX, Chen KZ, Wang YK, Hu QG, Wang LF, Hu ZL, Pan PH, Li F, Bi FF, Li CQ. Hippocampal LASP1 ameliorates chronic stress-mediated behavioral responses in a mouse model of unpredictable chronic mild stress. Neuropharmacology 2020; 184:108410. [PMID: 33242526 DOI: 10.1016/j.neuropharm.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Substantial evidence has revealed that abnormalities in synaptic plasticity play important roles during the process of depression. LASP1 (LIM and SH3 domain protein 1), a member of actin-binding proteins, has been shown to be associated with the regulation of synaptic plasticity. However, the role of LASP1 in the regulation of mood is still unclear. Here, using an unpredictable chronic mild stress (UCMS) paradigm, we found that the mRNA and protein levels of LASP1 were decreased in the hippocampus of stressed mice and that UCMS-induced down-regulation of LASP1 was abolished by chronic administration of fluoxetine. Adenosine-associated virus-mediated hippocampal LASP1 overexpression alleviated the UCMS-induced behavioral results of forced swimming test and sucrose preference test in stressed mice. It also restored the dendritic spine density, elevated the levels of AKT (a serine/threonine protein kinase), phosphorylated-AKT, insulin-like growth factor 2, and postsynaptic density protein 95. These findings suggest that LASP1 alleviates UCMS-provoked behavioral defects, which may be mediated by an enhanced dendritic spine density and more activated AKT-dependent LASP1 signaling, pointing to the antidepressant role of LASP1.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China; Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ao Fu
- Clinic Medicine of 5-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xue-Qin Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Kang-Zhi Chen
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yi-Kai Wang
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qiong-Gui Hu
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Lai-Fa Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pin-Hua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Fang-Fang Bi
- Department of Neurology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
Up-regulated microRNA-218-5p ameliorates the damage of dopaminergic neurons in rats with Parkinson's disease via suppression of LASP1. Brain Res Bull 2020; 166:92-101. [PMID: 33144090 DOI: 10.1016/j.brainresbull.2020.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a frequent degenerative disease of the nervous system with undefined pathogenesis. This study explored the protective effect of microRNA (miR)-218-5p on dopaminergic neuron injury in substantia nigra (SN) of rats with PD through the regulation of LIM and SH3 domain protein 1 (LASP1). METHODS The PD rat model was established by fixed point injection of 6-hydroxydopamine into the rats. The PD rats were injected with miR-218-5p overexpressed recombinant adeno-associated virus (rAAV) or LASP1 silenced rAAV to explore their roles in dopaminergic neurons in SN of rats with PD. The changes in pathological structure of SN were observed and the expression of tyrosine hydroxylase (TH) and deacetylvindoline acetyltransferase (DAT), the dopaminergic neuron apoptosis and oxidative stress factor in the SN were detected. The expression of miR-218-5p, LASP1, Bcl-2 and Bax in SN was detected. The targeting relationship between miR-218-5p and LASP1 was confirmed. RESULTS Declined miR-218-5p and overexpressed LASP1 existed in the brain SN of PD rats. Up-regulated miR-218-5p or inhibited LASP1 improved the pathological damage of dopaminergic neurons and increased the number of TH and DAT positive cells in brain SN of PD rats. Furthermore, elevated miR-218-5p or depressed LASP1 inhibited the apoptosis, and oxidative stress of dopaminergic neurons in brain SN of PD rats. In addition, increased miR-218-5p repressed the expression of LASP1 in the brain SN of PD rats. LASP1 was proven to be a direct target of miR-218-5p. CONCLUSION The study highlights that up-regulated miR-218-5p could improve the damage of dopaminergic neurons in PD rats, which was related to the inhibition of LASP1.
Collapse
|
9
|
Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput Biol 2020; 16:e1008287. [PMID: 33017396 PMCID: PMC7561204 DOI: 10.1371/journal.pcbi.1008287] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
The role of alternative splicing is one of the great unanswered questions in cellular biology. There is strong evidence for alternative splicing at the transcript level, and transcriptomics experiments show that many splice events are tissue specific. It has been suggested that alternative splicing evolved in order to remodel tissue-specific protein-protein networks. Here we investigated the evidence for tissue-specific splicing among splice isoforms detected in a large-scale proteomics analysis. Although the data supporting alternative splicing is limited at the protein level, clear patterns emerged among the small numbers of alternative splice events that we could detect in the proteomics data. More than a third of these splice events were tissue-specific and most were ancient: over 95% of splice events that were tissue-specific in both proteomics and RNAseq analyses evolved prior to the ancestors of lobe-finned fish, at least 400 million years ago. By way of contrast, three in four alternative exons in the human gene set arose in the primate lineage, so our results cannot be extrapolated to the whole genome. Tissue-specific alternative protein forms in the proteomics analysis were particularly abundant in nervous and muscle tissues and their genes had roles related to the cytoskeleton and either the structure of muscle fibres or cell-cell connections. Our results suggest that this conserved tissue-specific alternative splicing may have played a role in the development of the vertebrate brain and heart. We manually curated a set of 255 splice events detected in a large-scale tissue-based proteomics experiment and found that more than a third had evidence of significant tissue-specific differences. Events that were significantly tissue-specific at the protein level were highly conserved; almost 75% evolved over 400 million years ago. The tissues in which we found most evidence for tissue-specific splicing were nervous tissues and cardiac tissues. Genes with tissue-specific events in these two tissues had functions related to important cellular structures in brain and heart tissues. These splice events may have been essential for the development of vertebrate heart and muscle. However, our data set may not be representative of alternative exons as a whole. We found that most tissue specific splicing was strongly conserved, but just 5% of annotated alternative exons in the human gene set are ancient. More than three quarters of alternative exons are primate-derived. Although the analysis does not provide a definitive answer to the question of the functional role of alternative splicing, our results do indicate that alternative splice variants may have played a significant part in the evolution of brain and heart tissues in vertebrates.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Tomas di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Jesus Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Michael L. Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
Pollitt SL, Myers KR, Yoo J, Zheng JQ. LIM and SH3 protein 1 localizes to the leading edge of protruding lamellipodia and regulates axon development. Mol Biol Cell 2020; 31:2718-2732. [PMID: 32997597 PMCID: PMC7927181 DOI: 10.1091/mbc.e20-06-0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton drives cell motility and is essential for neuronal development and function. LIM and SH3 protein 1 (LASP1) is a unique actin-binding protein that is expressed in a wide range of cells including neurons, but its roles in cellular motility and neuronal development are not well understood. We report that LASP1 is expressed in rat hippocampus early in development, and this expression is maintained through adulthood. High-resolution imaging reveals that LASP1 is selectively concentrated at the leading edge of lamellipodia in migrating cells and axonal growth cones. This local enrichment of LASP1 is dynamically associated with the protrusive activity of lamellipodia, depends on the barbed ends of actin filaments, and requires both the LIM domain and the nebulin repeats of LASP1. Knockdown of LASP1 in cultured rat hippocampal neurons results in a substantial reduction in axonal outgrowth and arborization. Finally, loss of the Drosophila homologue Lasp from a subset of commissural neurons in the developing ventral nerve cord produces defasciculated axon bundles that do not reach their targets. Together, our data support a novel role for LASP1 in actin-based lamellipodial protrusion and establish LASP1 as a positive regulator of both in vitro and in vivo axon development.
Collapse
Affiliation(s)
| | | | - Jin Yoo
- Emory College, Emory University, Atlanta, GA 30322
| | - James Q Zheng
- Department of Cell Biology and.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, and
| |
Collapse
|