1
|
Yang GM, Tian FY, Shen YW, Yang CY, Yuan H, Li P, Gao ZB. Functional characterization and in vitro pharmacological rescue of KCNQ2 pore mutations associated with epileptic encephalopathy. Acta Pharmacol Sin 2023; 44:1589-1599. [PMID: 36932231 PMCID: PMC10374643 DOI: 10.1038/s41401-023-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/26/2023] [Indexed: 03/19/2023] Open
Abstract
Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 μM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 μM) and XEN1101 (1 μM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.
Collapse
Affiliation(s)
- Gui-Mei Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Fu-Yun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yan-Wen Shen
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Beijing, 100853, China
- Department of Pediatric neurology, Children's Hospital of Fudan university at Xiamen, Xiamen, 361006, China
| | - Chuan-Yan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ping Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao-Bing Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Zheng H, Yan X, Li G, Lin H, Deng S, Zhuang W, Yao F, Lu Y, Xia X, Yuan H, Jin L, Yan Z. Proactive functional classification of all possible missense single-nucleotide variants in KCNQ4. Genome Res 2022; 32:1573-1584. [PMID: 35760561 PMCID: PMC9435748 DOI: 10.1101/gr.276562.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023]
Abstract
Clinical exome sequencing has yielded extensive disease-related missense single-nucleotide variants (SNVs) of uncertain significance, leading to diagnostic uncertainty. KCNQ4 is one of the most commonly responsible genes for autosomal dominant nonsyndromic hearing loss. According to the gnomAD cohort, approximately one in 100 people harbors missense variants in KCNQ4 (missense variants with minor allele frequency > 0.1% were excluded), but most are of unknown consequence. To prospectively characterize the function of all 4085 possible missense SNVs of human KCNQ4, we recorded the whole-cell currents using the patch-clamp technique and categorized 1068 missense SNVs as loss of function, as well as 728 loss-of-function SNVs located in the transmembrane domains. Further, to mimic the heterozygous condition in Deafness nonsyndromic autosomal dominant 2 (DFNA2) patients caused by KCNQ4 variants, we coexpressed loss-of-function variants with wild-type KCNQ4 and found 516 variants showed impaired or only partially rescued heterogeneous channel function. Overall, our functional classification is highly concordant with the auditory phenotypes in Kcnq4 mutant mice and the assessments of pathogenicity in clinical variant interpretations. Taken together, our results provide strong functional evidence to support the pathogenicity classification of newly discovered KCNQ4 missense variants in clinical genetic testing.
Collapse
Affiliation(s)
- Honglan Zheng
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xinhao Yan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Guanluan Li
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hengwei Lin
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Siqi Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenhui Zhuang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fuqiang Yao
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
| | - Yu Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Xia
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Jin
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiqiang Yan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Miceli F, Millevert C, Soldovieri MV, Mosca I, Ambrosino P, Carotenuto L, Schrader D, Lee HK, Riviello J, Hong W, Risen S, Emrick L, Amin H, Ville D, Edery P, de Bellescize J, Michaud V, Van-Gils J, Goizet C, Willemsen MH, Kleefstra T, Møller RS, Bayat A, Devinsky O, Sands T, Korenke GC, Kluger G, Mefford HC, Brilstra E, Lesca G, Milh M, Cooper EC, Taglialatela M, Weckhuysen S. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. EBioMedicine 2022; 81:104130. [PMID: 35780567 PMCID: PMC9254340 DOI: 10.1016/j.ebiom.2022.104130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. Methods Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. Findings Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. Interpretation Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. Funding Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.
Collapse
|
4
|
Vanoye CG, Desai RR, Ji Z, Adusumilli S, Jairam N, Ghabra N, Joshi N, Fitch E, Helbig KL, McKnight D, Lindy AS, Zou F, Helbig I, Cooper EC, George AL. High-throughput evaluation of epilepsy-associated KCNQ2 variants reveals functional and pharmacological heterogeneity. JCI Insight 2022; 7:156314. [PMID: 35104249 PMCID: PMC8983144 DOI: 10.1172/jci.insight.156314] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hundreds of genetic variants in KCNQ2 encoding the voltage-gated potassium channel KV7.2 are associated with early onset epilepsy and/or developmental disability, but the functional consequences of most variants are unknown. Absent functional annotation for KCNQ2 variants hinders identification of individuals who may benefit from emerging precision therapies. We employed automated patch clamp recordings to assess at, to our knowledge, an unprecedented scale the functional and pharmacological properties of 79 missense and 2 inframe deletion KCNQ2 variants. Among the variants we studied were 18 known pathogenic variants, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. We analyzed electrophysiological data recorded from 9,480 cells. The functional properties of 18 known pathogenic variants largely matched previously published results and validated automated patch clamp for this purpose. Unlike rare population variants, most disease-associated KCNQ2 variants exhibited prominent loss-of-function with dominant-negative effects, providing strong evidence in support of pathogenicity. All variants responded to retigabine, although there were substantial differences in maximal responses. Our study demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine, a proposed precision therapy for KCNQ2 developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Reshma R. Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zhigang Ji
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sneha Adusumilli
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nirvani Jairam
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nora Ghabra
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nishtha Joshi
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Eryn Fitch
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katherine L. Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward C. Cooper
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Urrutia J, Aguado A, Gomis-Perez C, Muguruza-Montero A, Ballesteros OR, Zhang J, Nuñez E, Malo C, Chung HJ, Leonardo A, Bergara A, Villarroel A. An epilepsy-causing mutation leads to co-translational misfolding of the Kv7.2 channel. BMC Biol 2021; 19:109. [PMID: 34020651 PMCID: PMC8138981 DOI: 10.1186/s12915-021-01040-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. Results We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. Conclusions Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01040-1.
Collapse
Affiliation(s)
- Janire Urrutia
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Physiology, Faculty of Medicine and Nursery, UPV/EHU, 48940, Leioa, Spain
| | | | - Carolina Gomis-Perez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain
| | | | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aritz Leonardo
- Departamento de Física Aplicada II, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain.,Donostia International Physics Center, 20018, Donostia, Spain
| | - Aitor Bergara
- Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018, Donostia, Spain.,Donostia International Physics Center, 20018, Donostia, Spain.,Departmento de Materia Condensada, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain
| | | |
Collapse
|
6
|
Lauritano A, Moutton S, Longobardi E, Tran Mau‐Them F, Laudati G, Nappi P, Soldovieri MV, Ambrosino P, Cataldi M, Jouan T, Lehalle D, Maurey H, Philippe C, Miceli F, Vitobello A, Taglialatela M. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 2019; 4:464-475. [PMID: 31440727 PMCID: PMC6698674 DOI: 10.1002/epi4.12353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
Collapse
Affiliation(s)
- Anna Lauritano
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Sebastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Elena Longobardi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Frédéric Tran Mau‐Them
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Giusy Laudati
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Piera Nappi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | | | - Paolo Ambrosino
- Division of Pharmacology, Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - Mauro Cataldi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Thibaud Jouan
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Daphné Lehalle
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Hélène Maurey
- Service de Neurologie PédiatriqueAPHP, Hôpital Universitaire BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Philippe
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Francesco Miceli
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Antonio Vitobello
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
7
|
Kim EC, Patel J, Zhang J, Soh H, Rhodes JS, Tzingounis AV, Chung HJ. Heterozygous loss of epilepsy gene KCNQ2 alters social, repetitive and exploratory behaviors. GENES BRAIN AND BEHAVIOR 2019; 19:e12599. [PMID: 31283873 PMCID: PMC7050516 DOI: 10.1111/gbb.12599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/28/2022]
Abstract
KCNQ/Kv7 channels conduct voltage‐dependent outward potassium currents that potently decrease neuronal excitability. Heterozygous inherited mutations in their principle subunits Kv7.2/KCNQ2 and Kv7.3/KCNQ3 cause benign familial neonatal epilepsy whereas patients with de novo heterozygous Kv7.2 mutations are associated with early‐onset epileptic encephalopathy and neurodevelopmental disorders characterized by intellectual disability, developmental delay and autism. However, the role of Kv7.2‐containing Kv7 channels in behaviors especially autism‐associated behaviors has not been described. Because pathogenic Kv7.2 mutations in patients are typically heterozygous loss‐of‐function mutations, we investigated the contributions of Kv7.2 to exploratory, social, repetitive and compulsive‐like behaviors by behavioral phenotyping of both male and female KCNQ2+/− mice that were heterozygous null for the KCNQ2 gene. Compared with their wild‐type littermates, male and female KCNQ2+/− mice displayed increased locomotor activity in their home cage during the light phase but not the dark phase and showed no difference in motor coordination, suggesting hyperactivity during the inactive light phase. In the dark phase, KCNQ2+/− group showed enhanced exploratory behaviors, and repetitive grooming but decreased sociability with sex differences in the degree of these behaviors. While male KCNQ2+/− mice displayed enhanced compulsive‐like behavior and social dominance, female KCNQ2+/− mice did not. In addition to elevated seizure susceptibility, our findings together indicate that heterozygous loss of Kv7.2 induces behavioral abnormalities including autism‐associated behaviors such as reduced sociability and enhanced repetitive behaviors. Therefore, our study is the first to provide a tangible link between loss‐of‐function Kv7.2 mutations and the behavioral comorbidities of Kv7.2‐associated epilepsy.
Collapse
Affiliation(s)
- Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jaimin Patel
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
8
|
Epileptic Encephalopathy In A Patient With A Novel Variant In The Kv7.2 S2 Transmembrane Segment: Clinical, Genetic, and Functional Features. Int J Mol Sci 2019; 20:ijms20143382. [PMID: 31295832 PMCID: PMC6678645 DOI: 10.3390/ijms20143382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022] Open
Abstract
Kv7.2 subunits encoded by the KCNQ2 gene provide a major contribution to the M-current (IKM), a voltage-gated K+ current crucially involved in the regulation of neuronal excitability. Heterozygous missense variants in Kv7.2 are responsible for epileptic diseases characterized by highly heterogeneous genetic transmission and clinical severity, ranging from autosomal-dominant Benign Familial Neonatal Seizures (BFNS) to sporadic cases of severe epileptic and developmental encephalopathy (DEE). Here, we describe a patient with neonatal onset DEE, carrying a previously undescribed heterozygous KCNQ2 c.418G > C, p.Glu140Gln (E140Q) variant. Patch-clamp recordings in CHO cells expressing the E140Q mutation reveal dramatic loss of function (LoF) effects. Multistate structural modelling suggested that the E140Q substitution impeded an intrasubunit electrostatic interaction occurring between the E140 side chain in S2 and the arginine at position 210 in S4 (R210); this interaction is critically involved in stabilizing the activated configuration of the voltage-sensing domain (VSD) of Kv7.2. Functional results from coupled charge reversal or disulfide trapping experiments supported such a hypothesis. Finally, retigabine restored mutation-induced functional changes, reinforcing the rationale for the clinical use of Kv7 activators as personalized therapy for DEE-affected patients carrying Kv7.2 LoF mutations.
Collapse
|
9
|
Nastou KC, Batskinis MA, Litou ZI, Hamodrakas SJ, Iconomidou VA. Analysis of Single-Nucleotide Polymorphisms in Human Voltage-Gated Ion Channels. J Proteome Res 2019; 18:2310-2320. [DOI: 10.1021/acs.jproteome.9b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katerina C. Nastou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Michail A. Batskinis
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| |
Collapse
|
10
|
Kulkarni N, Mittlesteadt J, Vidaurre J. A Case of Neonatal Seizures With an Unusual Electroclinical Pattern. Child Neurol Open 2019; 6:2329048X19890172. [PMID: 35224130 PMCID: PMC8873557 DOI: 10.1177/2329048x19890172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Benign familial neonatal epilepsy is a syndrome characterized by recurrent seizures
occurring in the neonatal period. Seizures commonly begin at day 3 of life and usually
abate by 1 to 4 months of life. Seizures are usually described as tonic with an asymmetric
component with associated autonomic features. The authors report a newborn presenting with
an unusual electroclinical phenotype. The electroencephalogram demonstrated an unusual
pattern of electrical attenuation at the onset of seizures. Identification of these
features is important for early recognition of this neonatal syndrome, as well as
initiation of proper therapy.
Collapse
Affiliation(s)
- Neil Kulkarni
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital, Columbus, OH, USA
- Pediatric Clinical Neurophysiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | - Jorge Vidaurre
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
11
|
Tykocki NR, Heppner TJ, Dalsgaard T, Bonev AD, Nelson MT. The K V 7 channel activator retigabine suppresses mouse urinary bladder afferent nerve activity without affecting detrusor smooth muscle K + channel currents. J Physiol 2018; 597:935-950. [PMID: 30536555 DOI: 10.1113/jp277021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/06/2018] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS KV 7 channels are a family of voltage-dependent K+ channels expressed in many cell types, which open in response to membrane depolarization to regulate cell excitability. Drugs that target KV 7 channels are used clinically to treat epilepsy. Interestingly, these drugs also cause urinary retention, but it was unclear how. In this study, we focused on two possible mechanisms by which retigabine could cause urinary retention: by decreasing smooth muscle excitability, or by decreasing sensory nerve outflow. Urinary bladder smooth muscle had no measurable KV 7 channel currents. However, the KV 7 channel agonist retigabine nearly abolished sensory nerve outflow from the urinary bladder during bladder filling. We conclude that KV 7 channel activation likely affects urinary bladder function by blocking afferent nerve outflow to the brain, which is key to sensing bladder fullness. ABSTRACT KV 7 channels are voltage-dependent K+ channels that open in response to membrane depolarization to regulate cell excitability. KV 7 activators, such as retigabine, were used to treat epilepsy but caused urinary retention. Using electrophysiological recordings from freshly isolated mouse urinary bladder smooth muscle (UBSM) cells, isometric contractility of bladder strips, and ex vivo measurements of bladder afferent activity, we explored the role of KV 7 channels as regulators of murine urinary bladder function. The KV 7 activator retigabine (10 μM) had no effect on voltage-dependent K+ currents or resting membrane potential of UBSM cells, suggesting that these cells lacked retigabine-sensitive KV 7 channels. The KV 7 inhibitor XE-991 (10 μM) inhibited UBSM K+ currents; the properties of these currents, however, were typical of KV 2 channels and not KV 7 channels. Retigabine inhibited voltage-dependent Ca2+ channel (VDCC) currents and reduced steady-state contractions to 60 mM KCl in bladder strips, suggesting that reduction in VDCC current was sufficient to directly affect UBSM function. To determine if retigabine altered ex vivo bladder sensory outflow, we measured afferent activity during simulated transient contractions (TCs) of the bladder wall. Simulated TCs caused bursts of afferent activity that were nearly abolished by retigabine. The effects of retigabine were blocked by co-incubation with XE-991, suggesting specific activation of KV 7 channels on afferent nerves. These results indicate that retigabine primarily affects urinary bladder function by inhibiting TC generation and afferent nerve activity, which are key to sensing bladder fullness. Any direct inhibition of UBSM contractility is likely to be from non-specific effects on VDCCs and KV 2 channels.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA
| | - Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
13
|
Mirza N, Appleton R, Burn S, du Plessis D, Duncan R, Farah JO, Feenstra B, Hviid A, Josan V, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. Genetic regulation of gene expression in the epileptic human hippocampus. Hum Mol Genet 2017; 26:1759-1769. [PMID: 28334860 PMCID: PMC5411756 DOI: 10.1093/hmg/ddx061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 01/21/2023] Open
Abstract
Epilepsy is a serious and common neurological disorder. Expression quantitative loci (eQTL) analysis is a vital aid for the identification and interpretation of disease-risk loci. Many eQTLs operate in a tissue- and condition-specific manner. We have performed the first genome-wide cis-eQTL analysis of human hippocampal tissue to include not only normal (n = 22) but also epileptic (n = 22) samples. We demonstrate that disease-associated variants from an epilepsy GWAS meta-analysis and a febrile seizures (FS) GWAS are significantly more enriched with epilepsy-eQTLs than with normal hippocampal eQTLs from two larger independent published studies. In contrast, GWAS meta-analyses of two other brain diseases associated with hippocampal pathology (Alzheimer's disease and schizophrenia) are more enriched with normal hippocampal eQTLs than with epilepsy-eQTLs. These observations suggest that an eQTL analysis that includes disease-affected brain tissue is advantageous for detecting additional risk SNPs for the afflicting and closely related disorders, but not for distinct diseases affecting the same brain regions. We also show that epilepsy eQTLs are enriched within epilepsy-causing genes: an epilepsy cis-gene is significantly more likely to be a causal gene for a Mendelian epilepsy syndrome than to be a causal gene for another Mendelian disorder. Epilepsy cis-genes, compared to normal hippocampal cis-genes, are more enriched within epilepsy-causing genes. Hence, we utilize the epilepsy eQTL data for the functional interpretation of epilepsy disease-risk variants and, thereby, highlight novel potential causal genes for sporadic epilepsy. In conclusion, an epilepsy-eQTL analysis is superior to normal hippocampal tissue eQTL analyses for identifying the variants and genes underlying epilepsy.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Richard Appleton
- The Roald Dahl EEG Unit, Paediatric Neurosciences Foundation, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Sasha Burn
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Daniel du Plessis
- Department of Cellular Pathology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Roderick Duncan
- Department of Neurology, Christchurch Hospital, Christchurch 8140, New Zealand
| | - Jibril Osman Farah
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Vivek Josan
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Arif Shukralla
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Graeme J. Sills
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony G. Marson
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
14
|
Di Cesare Mannelli L, Lucarini E, Micheli L, Mosca I, Ambrosino P, Soldovieri MV, Martelli A, Testai L, Taglialatela M, Calderone V, Ghelardini C. Effects of natural and synthetic isothiocyanate-based H 2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. Neuropharmacology 2017; 121:49-59. [PMID: 28431970 DOI: 10.1016/j.neuropharm.2017.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023]
Abstract
Hydrogen sulfide (H2S) is a crucial signaling molecule involved in several physiological and pathological processes. Nonetheless, the role of this gasotransmitter in the pathogenesis and treatment of neuropathic pain is controversial. The aim of the present study was to investigate the pain relieving profile of a series of slow releasing H2S donors (the natural allyl-isothiocyanate and the synthetics phenyl- and carboxyphenyl-isothiocyanate) in animal models of neuropathic pain induced by paclitaxel or oxaliplatin, anticancer drugs characterized by a dose-limiting neurotoxicity. The potential contribution of Kv7 potassium channels modulation was also studied. Mice were treated with paclitaxel (2.0 mg kg-1) i.p. on days 1, 3, 5 and 7; oxaliplatin (2.4 mg kg-1) was administered i.p. on days 1-2, 5-9, 12-14. Behavioral tests were performed on day 15. In both models, single subcutaneous administrations of H2S donors (1.33, 4.43, 13.31 μmol kg-1) reduced the hypersensitivity to cold non-noxious stimuli (allodynia-related measurement). The prototypical H2S donor NaHS was also effective. Activity was maintained after i.c.v. administrations. On the contrary, the S-lacking molecule allyl-isocyanate did not increase pain threshold; the H2S-binding molecule hemoglobin abolished the pain-relieving effects of isothiocyanates and NaHS. The anti-neuropathic properties of H2S donors were reverted by the Kv7 potassium channel blocker XE991. Currents carried by Kv7.2 homomers and Kv7.2/Kv7.3 heteromers expressed in CHO cells were potentiated by H2S donors. Sistemically- or centrally-administered isothiocyanates reduced chemotherapy-induced neuropathic pain by releasing H2S. Activation of Kv7 channels largely mediate the anti-neuropathic effect.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy.
| | - Elena Lucarini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Ilaria Mosca
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Paolo Ambrosino
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Maria Virginia Soldovieri
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy
| | - Alma Martelli
- Dept. of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Lara Testai
- Dept. of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Maurizio Taglialatela
- Dept. of Medicine and Health Science, University of Molise, Via Francesco De Sanctis, 1 Campobasso, Italy; Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Via Pansini 5, Naples, Italy
| | | | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, Florence, Italy
| |
Collapse
|
15
|
Sands TT, Balestri M, Bellini G, Mulkey SB, Danhaive O, Bakken EH, Taglialatela M, Oldham MS, Vigevano F, Holmes GL, Cilio MR. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 2016; 57:2019-2030. [DOI: 10.1111/epi.13596] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Tristan T. Sands
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| | - Martina Balestri
- Department of Neurology; Bambino Gesú Children's Hospital and Research Institute; Rome Italy
| | - Giulia Bellini
- Department of Experimental Medicine; Second University of Naples; Naples Italy
| | - Sarah B. Mulkey
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock Arkansas U.S.A
| | - Olivier Danhaive
- Department of Pediatrics; University of California San Francisco; San Francisco California U.S.A
| | - Eliza Hayes Bakken
- Department of Pediatrics; University of California San Francisco; San Francisco California U.S.A
| | | | - Michael S. Oldham
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| | - Federico Vigevano
- Department of Neurology; Bambino Gesú Children's Hospital and Research Institute; Rome Italy
| | - Gregory L. Holmes
- Department of Neurological Sciences; University of Vermont; College of Medicine; Burlington Vermont U.S.A
| | - Maria Roberta Cilio
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| |
Collapse
|
16
|
Current understanding and neurobiology of epileptic encephalopathies. Neurobiol Dis 2016; 92:72-89. [DOI: 10.1016/j.nbd.2016.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
|
17
|
Epilepsy-causing mutations in Kv7.2 C-terminus affect binding and functional modulation by calmodulin. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1856-66. [PMID: 26073431 DOI: 10.1016/j.bbadis.2015.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/14/2015] [Accepted: 06/08/2015] [Indexed: 11/21/2022]
Abstract
Mutations in the KCNQ2 gene, encoding for voltage-gated Kv7.2K(+) channel subunits, are responsible for early-onset epileptic diseases with widely-diverging phenotypic presentation, ranging from Benign Familial Neonatal Seizures (BFNS) to epileptic encephalopathy. In the present study, Kv7.2 BFNS-causing mutations (W344R, L351F, L351V, Y362C, and R553Q) have been investigated for their ability to interfere with calmodulin (CaM) binding and CaM-induced channel regulation. To this aim, semi-quantitative (Far-Western blotting) and quantitative (Surface Plasmon Resonance and dansylated CaM fluorescence) biochemical assays have been performed to investigate the interaction of CaM with wild-type or mutant Kv7.2 C-terminal fragments encompassing the CaM-binding domain; in parallel, mutation-induced changes in CaM-dependent Kv7.2 or Kv7.2/Kv7.3 current regulation were investigated by patch-clamp recordings in Chinese Hamster Ovary (CHO) cells co-expressing Kv7.2 or Kv7.2/Kv7.3 channels and CaM or CaM1234 (a CaM isoform unable to bind Ca(2+)). The results obtained suggest that each BFNS-causing mutation prompts specific biochemical and/or functional consequences; these range from slight alterations in CaM affinity which did not translate into functional changes (L351V), to a significant reduction in the affinity and functional modulation by CaM (L351F, Y362C or R553Q), to a complete functional loss without significant alteration in CaM affinity (W344R). CaM overexpression increased Kv7.2 and Kv7.2/Kv7.3 current levels, and partially (R553Q) or fully (L351F) restored normal channel function, providing a rationale pathogenetic mechanism for mutation-induced channel dysfunction in BFNS, and highlighting the potentiation of CaM-dependent Kv7.2 modulation as a potential therapeutic approach for Kv7.2-related epilepsies.
Collapse
|
18
|
Shimatani Y, Nodera H, Shibuta Y, Miyazaki Y, Misawa S, Kuwabara S, Kaji R. Abnormal gating of axonal slow potassium current in cramp-fasciculation syndrome. Clin Neurophysiol 2015; 126:1246-1254. [DOI: 10.1016/j.clinph.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
|
19
|
Grinton BE, Heron SE, Pelekanos JT, Zuberi SM, Kivity S, Afawi Z, Williams TC, Casalaz DM, Yendle S, Linder I, Lev D, Lerman-Sagie T, Malone S, Bassan H, Goldberg-Stern H, Stanley T, Hayman M, Calvert S, Korczyn AD, Shevell M, Scheffer IE, Mulley JC, Berkovic SF. Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome. Epilepsia 2015; 56:1071-80. [PMID: 25982755 DOI: 10.1111/epi.13020] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We evaluated seizure outcome in a large cohort of familial neonatal seizures (FNS), and examined phenotypic overlap with different molecular lesions. METHODS Detailed clinical data were collected from 36 families comprising two or more individuals with neonatal seizures. The seizure course and occurrence of seizures later in life were analyzed. Families were screened for KCNQ2, KCNQ3, SCN2A, and PRRT2 mutations, and linkage studies were performed in mutation-negative families to exclude known loci. RESULTS Thirty-three families fulfilled clinical criteria for benign familial neonatal epilepsy (BFNE); 27 of these families had KCNQ2 mutations, one had a KCNQ3 mutation, and two had SCN2A mutations. Seizures persisting after age 6 months were reported in 31% of individuals with KCNQ2 mutations; later seizures were associated with frequent neonatal seizures. Linkage mapping in two mutation-negative BFNE families excluded linkage to KCNQ2, KCNQ3, and SCN2A, but linkage to KCNQ2 could not be excluded in the third mutation-negative BFNE family. The three remaining families did not fulfill criteria of BFNE due to developmental delay or intellectual disability; a molecular lesion was identified in two; the other family remains unsolved. SIGNIFICANCE Most families in our cohort of familial neonatal seizures fulfill criteria for BFNE; the molecular cause was identified in 91%. Most had KCNQ2 mutations, but two families had SCN2A mutations, which are normally associated with a mixed picture of neonatal and infantile onset seizures. Seizures later in life are more common in BFNE than previously reported and are associated with a greater number of seizures in the neonatal period. Linkage studies in two families excluded known loci, suggesting a further gene is involved in BFNE.
Collapse
Affiliation(s)
- Bronwyn E Grinton
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - James T Pelekanos
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Fraser of Allander Neurosciences Unit, Royal Hospital for Sick Children, Glasgow, United Kingdom
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Zaid Afawi
- Tel-Aviv University Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - Tristiana C Williams
- Department of Genetic Medicine, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Dan M Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Simone Yendle
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Ilan Linder
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | - Dorit Lev
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel.,Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | - Stephen Malone
- Department of Neurosciences, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Haim Bassan
- Pediatric Neurology and Development Unit, Tel Aviv Sourasky Medical Center, Dana Children's Hospital, Tel-Aviv, Israel
| | | | - Thorsten Stanley
- Department of Paediatrics, School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Michael Hayman
- Department of Neurology, Royal Children's Hospital, Flemington, Victoria, Australia.,Department of Paediatrics, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sophie Calvert
- Department of Neurosciences, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Amos D Korczyn
- Department of Neurology, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Shevell
- Department of Pediatrics & Neurology, McGill University, Montreal, Quebec, Canada
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Flemington, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - John C Mulley
- Department of Genetic Medicine, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
20
|
Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci 2015; 35:3782-93. [PMID: 25740509 DOI: 10.1523/jneurosci.4423-14.2015] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms.
Collapse
|
21
|
Maljevic S, Lerche H. Potassium channel genes and benign familial neonatal epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 213:17-53. [DOI: 10.1016/b978-0-444-63326-2.00002-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Miceli F, Vargas E, Bezanilla F, Taglialatela M. Gating currents from Kv7 channels carrying neuronal hyperexcitability mutations in the voltage-sensing domain. Biophys J 2012; 102:1372-82. [PMID: 22455920 DOI: 10.1016/j.bpj.2012.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/27/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022] Open
Abstract
Changes in voltage-dependent gating represent a common pathogenetic mechanism for genetically inherited channelopathies, such as benign familial neonatal seizures or peripheral nerve hyperexcitability caused by mutations in neuronal K(v)7.2 channels. Mutation-induced changes in channel voltage dependence are most often inferred from macroscopic current measurements, a technique unable to provide a detailed assessment of the structural rearrangements underlying channel gating behavior; by contrast, gating currents directly measure voltage-sensor displacement during voltage-dependent gating. In this work, we describe macroscopic and gating current measurements, together with molecular modeling and molecular-dynamics simulations, from channels carrying mutations responsible for benign familial neonatal seizures and/or peripheral nerve hyperexcitability; K(v)7.4 channels, highly related to K(v)7.2 channels both functionally and structurally, were used for these experiments. The data obtained showed that mutations affecting charged residues located in the more distal portion of S(4) decrease the stability of the open state and the active voltage-sensing domain configuration but do not directly participate in voltage sensing, whereas mutations affecting a residue (R4) located more proximally in S(4) caused activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular mechanisms underlie the altered gating behavior of channels carrying disease-causing mutations at different voltage-sensing domain locations, thereby expanding our current view of the pathogenesis of neuronal hyperexcitability diseases.
Collapse
Affiliation(s)
- Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | | | | | | |
Collapse
|
23
|
Petrovic MM, Nowacki J, Olivo V, Tsaneva-Atanasova K, Randall AD, Mellor JR. Inhibition of post-synaptic Kv7/KCNQ/M channels facilitates long-term potentiation in the hippocampus. PLoS One 2012; 7:e30402. [PMID: 22348007 PMCID: PMC3278412 DOI: 10.1371/journal.pone.0030402] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/20/2011] [Indexed: 12/02/2022] Open
Abstract
Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M1 mAChR on CA1 pyramidal cells inhibit both small conductance Ca2+-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca2+calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M1 mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels.
Collapse
Affiliation(s)
- Milos M. Petrovic
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Institute of Medical Physiology, School of Medicine, Belgrade University, Beograd, Serbia
| | - Jakub Nowacki
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Valeria Olivo
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Randall
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Jack R. Mellor
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Soldovieri MV, Miceli F, Taglialatela M. Driving With No Brakes: Molecular Pathophysiology of Kv7 Potassium Channels. Physiology (Bethesda) 2011; 26:365-76. [DOI: 10.1152/physiol.00009.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kv7 potassium channels regulate excitability in neuronal, sensory, and muscular cells. Here, we describe their molecular architecture, physiological roles, and involvement in genetically determined channelopathies highlighting their relevance as targets for pharmacological treatment of several human disorders.
Collapse
Affiliation(s)
| | - Francesco Miceli
- Department of Neuroscience, University of Naples Federico II, Naples; and
- Division of Neurology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maurizio Taglialatela
- Department of Health Science, University of Molise, Campobasso
- Department of Neuroscience, University of Naples Federico II, Naples; and
| |
Collapse
|
25
|
Miceli F, Soldovieri MV, Iannotti FA, Barrese V, Ambrosino P, Martire M, Cilio MR, Taglialatela M. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants. Front Pharmacol 2011; 2:2. [PMID: 21687499 PMCID: PMC3108560 DOI: 10.3389/fphar.2011.00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/13/2011] [Indexed: 11/30/2022] Open
Abstract
Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2–Kv7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesco Miceli
- Division of Neurology, IRCCS Bambino Gesù Children's Hospital Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Maljevic S, Wuttke TV, Seebohm G, Lerche H. KV7 channelopathies. Pflugers Arch 2010; 460:277-88. [PMID: 20401729 DOI: 10.1007/s00424-010-0831-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 01/02/2023]
Abstract
KV7 voltage-gated potassium channels, encoded by the KCNQ gene family, have caught increasing interest of the scientific community for their important physiological roles, which are emphasized by the fact that four of the five so far identified members are related to different hereditary diseases. Furthermore, these channels prove to be attractive pharmacological targets for treating diseases characterized by membrane hyperexcitability. KV7 channels are expressed in brain, heart, thyroid gland, pancreas, inner ear, muscle, stomach, and intestines. They give rise to functionally important potassium currents, reduction of which results in pathologies such as long QT syndrome, diabetes, neonatal epilepsy, neuromyotonia, or progressive deafness. Here, we summarize some key traits of KV7 channels and review how their molecular deficiencies could explain diverse disease phenotypes. We also assess the therapeutic potential of KV7 channels; in particular, how the activation of KV7 channels by the compounds retigabine and R-L3 may be useful for treatment of epilepsy or cardiac arrhythmia.
Collapse
Affiliation(s)
- Snezana Maljevic
- Department of Neurology and Epileptology, Center for Neurology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
27
|
Novel mutation in KCNQ2 causing benign familial neonatal seizures. Pediatr Neurol 2009; 41:367-70. [PMID: 19818940 DOI: 10.1016/j.pediatrneurol.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 11/22/2022]
Abstract
Potassium channel subunits encoded by several genes of the KCNQ family underlie the M-current. Specifically, KCNQ2 and KCNQ3 play a major role at most neuronal sites. Mutations in KCNQ2 or KCNQ3 that reduce the M-current are responsible for benign familial neonatal seizures, a rare autosomal dominant idiopathic epilepsy of the newborn. The aim of this study was to investigate a single family with benign familial neonatal seizures for mutations in KCNQ genes and to analyze the association of mutation type with disease prognosis. A family in which members in several generations had signs and symptoms compatible with a diagnosis of benign familial neonatal seizures had DNA testing with single-stranded conformation polymorphism analysis for various mutations known to cause benign familial neonatal seizures. A novel KCNQ2 mutation c.63-66delGGTG (p.K21fsX40), causing a framework shift and early chain termination, was identified in the affected family members. In all cases, there was complete remission of the seizures after the neonatal period. This KCNQ2 mutation has implications for diagnosis and prognosis of familial neonatal seizures. Its presence suggests a benign disease with good prognosis and its identification can spare patients and physicians the need for extensive investigations or prolonged therapy.
Collapse
|
28
|
Neutralization of a unique, negatively-charged residue in the voltage sensor of KV7.2 subunits in a sporadic case of benign familial neonatal seizures. Neurobiol Dis 2009; 34:501-10. [DOI: 10.1016/j.nbd.2009.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/24/2009] [Accepted: 03/18/2009] [Indexed: 01/06/2023] Open
|
29
|
Sugiura Y, Nakatsu F, Hiroyasu K, Ishii A, Hirose S, Okada M, Jibiki I, Ohno H, Kaneko S, Ugawa Y. Lack of potassium current in W309R mutant KCNQ3 channel causing benign familial neonatal convulsions (BFNC). Epilepsy Res 2009; 84:82-5. [DOI: 10.1016/j.eplepsyres.2008.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 11/07/2008] [Accepted: 12/13/2008] [Indexed: 11/25/2022]
|
30
|
Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87:41-57. [DOI: 10.1016/j.pneurobio.2008.09.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 12/19/2022]
|
31
|
Abstract
Idiopathic epilepsies are considered to be genetically determined. The inheritance can be monogenic and the detected mutation considered sufficient to cause the phenotype. In contrast, when the inheritance is complex, the epileptic phenotype is determined by several minor genetic defects that are much more difficult to discover. In recent years, an increasing number of mutations, mainly associated with rare monogenic idiopathic epilepsy syndromes, have been identified in genes encoding subunits of voltage- or ligand-gated ion channels. A few mutations have also been found in the frequent classical forms of idiopathic generalized epilepsies which are thought to follow a complex genetic trait, for example, in absence or juvenile myoclonic epilepsies. Functional studies characterizing the molecular defects of the mutant channels point to an important role of GABAergic synaptic inhibition in the pathophysiology of idiopathic epilepsies. As a result of genetic and functional investigations, not only will the pathophysiology of epilepsy be better understood, but newly discovered genes and pathophysiological pathways may also determine novel targets for pharmacotherapy, as has been shown for the anticonvulsant drug retigabine, which enhances the activity of neuronal KCNQ potassium channels.
Collapse
|
32
|
Gating consequences of charge neutralization of arginine residues in the S4 segment of K(v)7.2, an epilepsy-linked K+ channel subunit. Biophys J 2008; 95:2254-64. [PMID: 18515377 DOI: 10.1529/biophysj.107.128371] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The K(v)7.2 subunits are the main molecular determinants of the M-current, a widespread K(+) current regulating neuronal excitability. Mutations in the K(v)7.2 gene cause benign familial neonatal seizures, an autosomally inherited human epilepsy. The benign familial neonatal seizure-causing mutations include those at arginine residues at positions 207 and 214 in the S(4) segment of K(v)7.2. In this study, each of the six S(4) arginines was individually replaced with neutral glutamines, and the functional properties of mutant channels were studied by whole-cell and single-channel voltage-clamp measurements. The results obtained suggest that each S(4) arginine residue plays a relevant role in the voltage-dependent gating of K(v)7.2 channels. In particular, a decreased positive charge at the N-terminal end of S(4) stabilized the activated state of the voltage-sensor, whereas positive-charge neutralization at the C-terminal end of S(4) favored the resting conformation. Strikingly, neutralization of a single arginine at position 201 was sufficient to cause a significant loss of voltage dependence in channel activation. Moreover, by comparing the functional properties of glutamine versus tryptophan substitution, we found steric bulk to play a relevant role at position 207, but not at position 214, in which the main functional effect of this disease-causing mutation seems to be a consequence of the loss of the positive charge.
Collapse
|
33
|
Maljevic S, Wuttke TV, Lerche H. Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 2008; 586:1791-801. [PMID: 18238816 PMCID: PMC2375730 DOI: 10.1113/jphysiol.2008.150656] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/31/2008] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated K+channels of the K(V)7 (KCNQ) family have been identified in the last 10-15 years by discovering the causative genes for three autosomal dominant diseases: cardiac arrhythmia (long QT syndrome) with or without congenital deafness (KCNQ1), a neonatal epilepsy (KCNQ2 and KCNQ3) and progressive deafness alone (KCNQ4). A fifth member of this gene family (KCNQ5) is not affected in a disease so far. Four genes (KCNQ2-5) are expressed in the nervous system. This review is focused on recent findings on the neuronal K(V)7 channelopathies, in particular on benign familial neonatal seizures (BFNS) and peripheral nerve hyperexcitability (PNH, neuromyotonia, myokymia) caused by KCNQ2 mutations. The phenotypic spectrum associated with KCNQ2 mutations is probably broader than initially thought, as patients with severe epilepsies and developmental delay, or with Rolando epilepsy have been described. With regard to the underlying molecular pathophysiology, it has been shown that mutations with very subtle changes restricted to subthreshold voltages can cause BFNS thereby proving in a human disease model that this is the relevant voltage range for these channels to modulate neuronal firing. The two mutations associated with PNH induce much more severe channel dysfunction with a dominant negative effect on wild type (WT) channels. Finally, K(V)7 channels present interesting targets for new therapeutic approaches to diseases caused by neuronal hyperexcitability, such as epilepsy, neuropathic pain, and migraine. The molecular mechanism of K(V)7 activation by retigabine, which is in phase III clinical testing to treat pharmacoresistant focal epilepsies, has been recently elucidated as a stabilization of the open conformation by binding to the pore region.
Collapse
Affiliation(s)
- Snezana Maljevic
- Neurologische Klinik und Institut für Angewandte Physiologie, Universität Ulm, Zentrum Klinische Forschung, Helmholtzstr. 8/1, D-89081 Ulm, Germany
| | | | | |
Collapse
|
34
|
Hansen HH, Waroux O, Seutin V, Jentsch TJ, Aznar S, Mikkelsen JD. Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 2008; 586:1823-32. [PMID: 18174210 DOI: 10.1113/jphysiol.2007.149450] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuronal Kv7 channels (also termed KCNQ channels) are the molecular correlate of the M-current. The Kv7 channels activate at rather negative membrane potentials (< or = 60 mV), thereby 'fine-tuning' the resting membrane potential. The Kv7 channels are widely expressed in the brain with the Kv7.2, Kv7.3 and Kv7.5 channels being the most abundant. The Kv7.4 subunit has the most restricted brain regional expression being present in discrete nuclei of brainstem only. Kv7 channels are expressed at different subcellular locations, being on both somatodendritic, axonal and terminal sites. This complex subcellular distribution of Kv7 channels enables them to participate in both pre- and postsynaptic modulation of basal and stimulated excitatory neurotransmission. Activation of neuronal Kv7 channels limits repetitive firing thereby potentially limiting the generation of long bursts, with subsequent inhibition of monoaminergic neurotransmitter release. In this review, we focus on the influence of Kv7 channels on dopaminergic and serotonergic neurotransmission. The data suggest a novel action of Kv7 channel openers which could translate into having therapeutic value in the treatment of disease states characterized by overactivity of dopaminergic (e.g. schizophrenia and drug abuse) and serotonergic neurotransmission (e.g. anxiety).
Collapse
Affiliation(s)
- Henrik H Hansen
- Department of Translational Neurobiology, NeuroSearch A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark.
| | | | | | | | | | | |
Collapse
|
35
|
Ferrante M, Blackwell KT, Migliore M, Ascoli GA. Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem 2008; 15:2456-71. [PMID: 18855673 PMCID: PMC3560392 DOI: 10.2174/092986708785909094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification and characterization of potential pharmacological targets in neurology and psychiatry is a fundamental problem at the intersection between medicinal chemistry and the neurosciences. Exciting new techniques in proteomics and genomics have fostered rapid progress, opening numerous questions as to the functional consequences of ligand binding at the systems level. Psycho- and neuro-active drugs typically work in nerve cells by affecting one or more aspects of electrophysiological activity. Thus, an integrated understanding of neuropharmacological agents requires bridging the gap between their molecular mechanisms and the biophysical determinants of neuronal function. Computational neuroscience and bioinformatics can play a major role in this functional connection. Robust quantitative models exist describing all major active membrane properties under endogenous and exogenous chemical control. These include voltage-dependent ionic channels (sodium, potassium, calcium, etc.), synaptic receptor channels (e.g. glutamatergic, GABAergic, cholinergic), and G protein coupled signaling pathways (protein kinases, phosphatases, and other enzymatic cascades). This brief review of neuromolecular medicine from the computational perspective provides compelling examples of how simulations can elucidate, explain, and predict the effect of chemical agonists, antagonists, and modulators in the nervous system.
Collapse
Affiliation(s)
| | - Kim T. Blackwell
- Krasnow Institute for Advanced Study, George Mason University
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| |
Collapse
|