1
|
Tsytsarev V, Plachez C, Zhao S, O'Connor DH, Erzurumlu RS. Bilateral Whisker Representations in the Primary Somatosensory Cortex in Robo3cKO Mice Are Reflected in the Primary Motor Cortex. Neuroscience 2024; 544:128-137. [PMID: 38447690 PMCID: PMC11146016 DOI: 10.1016/j.neuroscience.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Céline Plachez
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Shuxin Zhao
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Daniel H O'Connor
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, 3400 N. Charles Street, 338 Krieger Hall, Baltimore, MD 21218, USA.
| | - Reha S Erzurumlu
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Sabzalizadeh M, Afarinesh MR, Derakhshani A, Sheibani V. Left Barrel Cortical Neurons Activity following Transplantation of Stem Cells into Right Lesioned-Barrel Cortex in Rats. CELL JOURNAL 2023; 25:822-828. [PMID: 38192252 PMCID: PMC10777320 DOI: 10.22074/cellj.2023.2007586.1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/29/2023] [Accepted: 10/28/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Stem cells (SCs) can improve the functional defects of brain injury. Rodents use their whiskers to get tactile information from their surroundings. The aim of this study was to investigate whether the transplantation of SCs into the lesioned barrel cortex can help neuronal function in the contralateral cortex. MATERIALS AND METHODS Sixteen male Wistar rats (200-230 g) were used in this experimental study. We induced a mechanical lesion in the right barrel cortex area of rats by removing this area by a 3 mm skin punch. Four groups containing one intact group of rats: group 1: control, and three lesion groups, group 2: lesion+un-differentiated dental pulp SCs (U-DPSCs), group 3: lesion+differentiated dental pulp SCs (D-DPSCs), and group 4: cell medium (vehicle) that were injected in the lesion area. Three weeks after transplantation of SCs or cell medium, the rats' responses of left barrel cortical neurons to controlled deflections of right whiskers were recorded by using the extracellular single-unit recordings technique. RESULTS The results showed that the neural spontaneous activity and response magnitude of intact barrel cortex neurons in the lesion group decreased significantly (P<0.05) compared to the control group while ON and OFF responses were improved in the D-DPSCs (P<0.001) group compared to the vehicle group three weeks after transplantation. CONCLUSION Transplantation of dental pulp mesenchymal SCs significantly improved the neural responses of the left barrel cortex that was depressed in the vehicle group.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
4
|
Plachez C, Tsytsarev V, Zhao S, Erzurumlu RS. Amyloid Deposition and Dendritic Complexity of Corticocortical Projection Cells in Five Familial Alzheimer's Disease Mouse. Neuroscience 2023; 512:85-98. [PMID: 36549605 PMCID: PMC10112867 DOI: 10.1016/j.neuroscience.2022.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In Alzheimer's disease and related dementias, amyloid beta (Aβ) and amyloid plaques can disrupt long-term synaptic plasticity, learning and memory and cognitive function. Plaque accumulation can disrupt corticocortical circuitry leading to abnormalities in sensory, motor, and cognitive processing. In this study, using 5xFAD (five Familial Alzheimer's Disease - FAD - mutations) mice, we evaluated amyloid plaque formation in different cortical areas, and whether differential amyloid accumulation across cortical fields correlates with changes in dendritic complexity of layer 3 corticocortical projection neurons and functional responses in the primary somatosensory cortex following whisker stimulation. We focused on three cortical areas: the primary somatosensory cortex (S1), the primary motor cortex (M1), and the prefrontal cortex (PFC including the anterior cingulate, prelimbic, and infralimbic subdivisions). We found that Aβ and amyloid plaque accumulation is not uniform across 5xFAD cortical areas, while there is no expression in littermate controls. We also found that there are differential layer 3 pyramidal cell dendritic complexity changes across the three areas in 5xFAD mice, compared to same age controls, with no apparent relation to differential amyloid accumulation. We used voltage-sensitive dye imaging (VSDi) to visualize neural activity in S1, M1 and PFC following whisker activation. Control mice show normal physiological responses in all three cortical areas, whereas 5xFAD mice only display physiological responses in S1. Taken together our results show that 5xFAD mutation affects the overall dendritic morphology of layer 3 pyramidal cells across sensory-motor and association cortex irrespective of the density and distribution of the Aβ amyloid proteins. Corticocortical circuitry between the sensory and motor/association areas is most likely disrupted in 5xFAD mice as cortical responses to whisker stimulation are altered.
Collapse
Affiliation(s)
- Celine Plachez
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| | - Shuxin Zhao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 20 Penn St, HSF-2, Baltimore, 21201 MD, USA.
| |
Collapse
|
5
|
Tsytsarev V, Kwon SE, Plachez C, Zhao S, O'Connor DH, Erzurumlu RS. Layers 3 and 4 Neurons of the Bilateral Whisker-Barrel Cortex. Neuroscience 2022; 494:140-151. [PMID: 35598701 PMCID: PMC9884091 DOI: 10.1016/j.neuroscience.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023]
Abstract
In Robo3R3-5cKO mouse brain, rhombomere 3-derived trigeminal principal nucleus (PrV) neurons project bilaterally to the somatosensory thalamus. As a consequence, whisker-specific neural modules (barreloids and barrels) representing whiskers on both sides of the face develop in the sensory thalamus and the primary somatosensory cortex. We examined the morphological complexity of layer 4 barrel cells, their postsynaptic partners in layer 3, and functional specificity of layer 3 pyramidal cells. Layer 4 spiny stellate cells form much smaller barrels and their dendritic fields are more focalized and less complex compared to controls, while layer 3 pyramidal cells did not show notable differences. Using in vivo 2-photon imaging of a genetically encoded fluorescent [Ca2+] sensor, we visualized neural activity in the normal and Robo3R3-5cKO barrel cortex in response to ipsi- and contralateral single whisker stimulation. Layer 3 neurons in control animals responded only to their contralateral whiskers, while in the mutant cortex layer 3 pyramidal neurons showed both ipsi- and contralateral whisker responses. These results indicate that bilateral whisker map inputs stimulate different but neighboring groups of layer 3 neurons which normally relay contralateral whisker-specific information to other cortical areas.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| | - Sung E Kwon
- Department of Neuroscience, John Hopkins School of Medicine, 855 N. Wolfe Street, Rangos 295, Baltimore, MD 21205, United States.
| | - Celine Plachez
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| | - Shuxin Zhao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| | - Daniel H O'Connor
- Department of Neuroscience and Krieger Mind/Brain Institute Johns Hopkins University, 3400 N Charles St, 338 Krieger Hall, Baltimore, MD 21218, United States.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| |
Collapse
|
6
|
Rhee JK, Iwamoto Y, Baker BJ. Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators. Front Neuroanat 2021; 15:741711. [PMID: 34795565 PMCID: PMC8592998 DOI: 10.3389/fnana.2021.741711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) expressed pan-neuronally were able to optically resolve bicuculline induced spontaneous oscillations in brain slices of the mouse motor cortex. Three GEVIs were used that differ in their timing of response to voltage transients as well as in their voltage ranges. The duration, number of cycles, and frequency of the recorded oscillations reflected the characteristics of each GEVI used. Multiple oscillations imaged in the same slice never originated at the same location, indicating the lack of a “hot spot” for induction of the voltage changes. Comparison of pan-neuronal, Ca2+/calmodulin-dependent protein kinase II α restricted, and parvalbumin restricted GEVI expression revealed distinct profiles for the excitatory and inhibitory cells in the spontaneous oscillations of the motor cortex. Resolving voltage fluctuations across space, time, and cell types with GEVIs represent a powerful approach to dissecting neuronal circuit activity.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Bradley J Baker
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
7
|
Sensational developments in somatosensory development? Curr Opin Neurobiol 2021; 66:212-223. [PMID: 33454646 DOI: 10.1016/j.conb.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022]
Abstract
This is an overview of the most recent advances pertaining to the development of the cardinal components of the somatosensory system: the peripheral sensory neurons that perceive somatosensory stimuli, the first line central nervous system circuits that modulate them, and the higher structures such as the somatosensory cortex that eventually compute a motor response to them. Here, I also review the most recent findings concerning the role of neuronal activity in somatosensory development, formation of somatotopic maps, insights into human somatosensory development and the link between aberrant somatosensation and neurodevelopmental disorders.
Collapse
|
8
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
9
|
Altered visual population receptive fields in human albinism. Cortex 2020; 128:107-123. [PMID: 32334151 DOI: 10.1016/j.cortex.2020.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/10/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Albinism is a congenital disorder where misrouting of the optic nerves at the chiasm gives rise to abnormal visual field representations in occipital cortex. In typical human development, the left occipital cortex receives retinal input predominantly from the right visual field, and vice-versa. In albinism, there is a more complete decussation of optic nerve fibers at the chiasm, resulting in partial representation of the temporal hemiretina (ipsilateral visual field) in the contralateral hemisphere. In this study, we characterize the receptive field properties for these abnormal representations by conducting detailed fMRI population receptive field mapping in a rare subset of participants with albinism and no ocular nystagmus. We find a nasal bias for receptive field positions in the abnormal temporal hemiretina representation. In addition, by modelling responses to bilateral visual field stimulation in the overlap zone, we found evidence in favor of discrete unilateral receptive fields, suggesting a conservative pattern of spatial selectivity in the presence of abnormal retinal input.
Collapse
|
10
|
Neumannova K, Machova-Urdzikova L, Kwok JCF, Fawcett JW, Jendelova P. Adaptation of tape removal test for measurement of sensitivity in perineal area of rat. Exp Neurol 2019; 324:113097. [PMID: 31707082 DOI: 10.1016/j.expneurol.2019.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
Regeneration after spinal cord injury is a goal of many studies. Although the most obvious target is to recover motor function, restoration of sensation can also improve the quality of life after spinal cord injury. For many patients, recovery of sensation in the perineal and genital area is a high priority. Currently there is no experimental test in rodents for measuring changes in sensation in the perineal and genital area after spinal cord injury. The aim of our study was to develop a behavioural test for measuring the sensitivity of the perineal and genital area in rats. We have modified the tape removal test used routinely to test sensorimotor deficits after stroke and spinal cord injury to test the perineal area with several variations. A small piece of tape (approximately 1 cm2) was attached to the perineal area. Time to first contact and to the removal of the tape was measured. Each rat was trained for 5 consecutive days and then tested weekly. We compared different rat strains (Wistar, Sprague-Dawley, Long-Evans and Lewis), both genders, shaving and non-shaving and different types of tape. We found that the test was suitable for all tested strains, however, Lewis rats achieved the lowest contact times, but this difference was significant only for the first few days of learning the task. There were no significant differences between gender and different types of tape or shaving. After training the animals underwent dorsal column lesion at T10 and were tested at day 3, 8, 14 and 21. The test detected a sensory deficit, the average time across all animals to sense the stimulus increased from 1'32 up to 3'20. There was a strong relationship between lesion size and tape detection time, and only lesions that extended laterally to the dorsal root entry zone produced significant sensory deficits. Other standard behavioural tests (BBB, von Frey, ladder and Plantar test) were performed in the same animals. There was a correlation between lesion size and deficit for the ladder and BBB tests, but not for the von Frey and Plantar tests. We conclude that the tape removal test is suitable for testing perineal sensation in rats, can be used in different strains and is appropriate for monitoring changes in sensation after spinal cord injury.
Collapse
Affiliation(s)
- K Neumannova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - L Machova-Urdzikova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - J C F Kwok
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; Faculty of Biological Sciences, University of Leeds, UK
| | - J W Fawcett
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - P Jendelova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic.
| |
Collapse
|
11
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
12
|
Kitazawa T, Rijli FM. Barrelette map formation in the prenatal mouse brainstem. Curr Opin Neurobiol 2018; 53:210-219. [PMID: 30342228 DOI: 10.1016/j.conb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The rodent whiskers are topographically mapped in brainstem sensory nuclei as neuronal modules known as barrelettes. Little is known about how the facial whisker pattern is copied into a brainstem barrelette topographic pattern, which serves as a template for the establishment of thalamic barreloid and, in turn, cortical barrel maps, and how precisely is the whisker pattern mapped in the brainstem during prenatal development. Here, we review recent insights advancing our understanding of the intrinsic and extrinsic patterning mechanisms contributing to establish topographical equivalence between the facial whisker pattern and the mouse brainstem during prenatal development and their relative importance.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
13
|
Gaspar P, Renier N. Constraints on somatosensory map development: mutants lead the way. Curr Opin Neurobiol 2018; 53:43-49. [PMID: 29753205 DOI: 10.1016/j.conb.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In the rodent somatosensory system, the disproportionally large whisker representation and their specialization into barrel-shaped units in the different sensory relays has offered experimentalists with an ideal tool to identify mechanisms involved in brain map formation. These combine three intertwined constraints: Firstly, fasciculation of the incoming axons; secondly, early neural activity; finally, molecular patterning. Sophisticated genetic manipulations in mice have now allowed dissecting these mechanisms with greater accuracy. Here we discuss some recent papers that provided novel insights into how these different mapping rules and constraints interact to shape the barrel map.
Collapse
Affiliation(s)
- Patricia Gaspar
- Inserm, U839, Institut du Fer à Moulin, Paris, France; Sorbonne Universités, Paris, France.
| | - Nicolas Renier
- Sorbonne Universités, Paris, France; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France
| |
Collapse
|