1
|
Famiglietti EV. Mammalian Retinal Bipolar Cells: Morphological Identification and Systematic Classification in Rabbit Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613998. [PMID: 39345639 PMCID: PMC11429971 DOI: 10.1101/2024.09.19.613998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal bipolar cells (BCs) convey visual signals from photoreceptors to more than 50 types of rabbit retinal ganglion cells (Famiglietti, 2020). More than 40 years ago, 10-11 types of bipolar cell were recognized in rabbit and cat retinas (Famiglietti, 1981). Twenty years later 10 were identified in mouse, rat, and monkey (Gosh et al., 2004), while recent molecular genetic studies indicate that there are 15 types of bipolar cell in mouse retina (Shekhar et al., 2016). The present detailed study of more than 800 bipolar cells in ten Golgi-impregnated rabbit retinas indicates that there are 14-16 types of cone bipolar cell and one type of rod bipolar cell in rabbit retina. These have been carefully analyzed in terms of dendritic and axonal morphology, and axon terminal stratification with respect to fiducial starburst amacrine cells. In fortuitous proximity, several types of bipolar cell can be related to identified ganglion cells by stratification and by contacts suggestive of synaptic connection. These results are compared with other studies of rabbit bipolar cells. Homologies with bipolar cells of mouse and monkey are considered in functional terms.
Collapse
|
2
|
Kim YJ, Packer O, Dacey DM. A circuit motif for color in the human foveal retina. Proc Natl Acad Sci U S A 2024; 121:e2405138121. [PMID: 39190352 PMCID: PMC11388358 DOI: 10.1073/pnas.2405138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024] Open
Abstract
The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or "blue-cone") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| |
Collapse
|
3
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
4
|
Kar D, Singireddy R, Kim YJ, Packer O, Schalek R, Cao D, Sloan KR, Pollreisz A, Dacey DM, Curcio CA. Unusual morphology of foveal Müller glia in an adult human born pre-term. Front Cell Neurosci 2024; 18:1409405. [PMID: 38994326 PMCID: PMC11236602 DOI: 10.3389/fncel.2024.1409405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
The fovea of the human retina, a specialization for acute and color vision, features a high concentration of cone photoreceptors. A pit on the inner retinal aspect is created by the centrifugal migration of post-receptoral neurons. Foveal cells are specified early in fetal life, but the fovea reaches its final configuration postnatally. Pre-term birth retards migration resulting in a small pit, a small avascular zone, and nearly continuous inner retinal layers. To explore the involvement of Müller glia, we used serial-section electron microscopic reconstructions to examine the morphology and neural contacts of Müller glia contacting a single foveal cone in a 28-year-old male organ donor born at 28 weeks of gestation. A small non-descript foveal avascular zone contained massed glial processes that included a novel class of 'inner' Müller glia. Similar to classic 'outer' Müller glia that span the retina, inner Müller glia have bodies in the inner nuclear layer (INL). These cells are densely packed with intermediate filaments and insert processes between neurons. Unlike 'outer' Müller glia, 'inner' Müller glia do not reach the external limiting membrane but instead terminate at the outer plexiform layer. One completely reconstructed inner cell ensheathed cone pedicles and a cone-driven circuit of midget bipolar and ganglion cells. Inner Müller glia outnumber foveal cones by 1.8-fold in the outer nuclear layer (221,448 vs. 123,026 cells/mm2). Cell bodies of inner Müller glia outnumber those of outer Müller glia by 1.7-fold in the INL (41,872 vs. 24,631 cells/ mm2). Müller glia account for 95 and 80% of the volume of the foveal floor and Henle fiber layer, respectively. Determining whether inner cells are anomalies solely resulting from retarded lateral migration of inner retinal neurons in pre-term birth requires further research.
Collapse
Affiliation(s)
- Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ramya Singireddy
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Richard Schalek
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Zhang B, Zhang R, Zhao J, Yang J, Xu S. The mechanism of human color vision and potential implanted devices for artificial color vision. Front Neurosci 2024; 18:1408087. [PMID: 38962178 PMCID: PMC11221215 DOI: 10.3389/fnins.2024.1408087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Vision plays a major role in perceiving external stimuli and information in our daily lives. The neural mechanism of color vision is complicated, involving the co-ordinated functions of a variety of cells, such as retinal cells and lateral geniculate nucleus cells, as well as multiple levels of the visual cortex. In this work, we reviewed the history of experimental and theoretical studies on this issue, from the fundamental functions of the individual cells of the visual system to the coding in the transmission of neural signals and sophisticated brain processes at different levels. We discuss various hypotheses, models, and theories related to the color vision mechanism and present some suggestions for developing novel implanted devices that may help restore color vision in visually impaired people or introduce artificial color vision to those who need it.
Collapse
Affiliation(s)
- Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jingjin Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jiarui Yang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| |
Collapse
|
6
|
Greene MJ, Boehm AE, Vanston JE, Pandiyan VP, Sabesan R, Tuten WS. Unique yellow shifts for small and brief stimuli in the central retina. J Vis 2024; 24:2. [PMID: 38833255 PMCID: PMC11156209 DOI: 10.1167/jov.24.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - John E Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Wang Y, Wong J, Duncan JL, Roorda A, Tuten WS. Enhanced S-Cone Syndrome: Elevated Cone Counts Confer Supernormal Visual Acuity in the S-Cone Pathway. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37459066 PMCID: PMC10362924 DOI: 10.1167/iovs.64.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose To measure photoreceptor packing density and S-cone spatial resolution as a function of retinal eccentricity in patients with enhanced S-cone syndrome (ESCS) and to discuss the possible mechanisms supporting their supernormal S-cone acuity. Methods We used an adaptive optics scanning laser ophthalmoscope (AOSLO) to characterize photoreceptor packing. A custom non-AO display channel was used to measure L/M- and S-cone-mediated visual acuity during AOSLO imaging. Acuity measurements were obtained using a four-alternative, forced-choice, tumbling E paradigm along the temporal meridian between the fovea and 4° eccentricity in five of six patients and in seven control subjects. L/M acuity was tested by presenting long-pass-filtered optotypes on a black background, excluding wavelengths to which S-cones are sensitive. S-cone isolation was achieved using a two-color, blue-on-yellow chromatic adaptation method that was validated on three control subjects. Results Inter-cone spacing measurements revealed a near-uniform cone density profile (ranging from 0.9-1.5 arcmin spacing) throughout the macula in ESCS. For comparison, normal cone density decreases by a factor of 14 from the fovea to 6°. Cone spacing of ESCS subjects was higher than normal in the fovea and subnormal beyond 2°. Compared to the control subjects (n = 7), S-cone-mediated acuities in patients with ESCS were normal near the fovea and became increasingly supernormal with retinal eccentricity. Beyond 2°, S-cone acuities were superior to L/M-cone-mediated acuity in the ESCS cohort, a reversal of the trend observed in normal retinas. Conclusions Higher than normal parafoveal cone densities (presumably dominated by S-cones) confer better than normal S-cone-mediated acuity in ESCS subjects.
Collapse
Affiliation(s)
- Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
8
|
Kim YJ, Packer O, Pollreisz A, Martin PR, Grünert U, Dacey DM. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. Proc Natl Acad Sci U S A 2023; 120:e2300545120. [PMID: 37098066 PMCID: PMC10160961 DOI: 10.1073/pnas.2300545120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna1090, Austria
| | - Paul R. Martin
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Washington National Primate Research Center, University of Washington, Seattle, WA98195
| |
Collapse
|
9
|
Sawant A, Saha A, Khoussine J, Sinha R, Hoon M. New insights into retinal circuits through EM connectomics: what we have learnt and what remains to be learned. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1168548. [PMID: 38983069 PMCID: PMC11182165 DOI: 10.3389/fopht.2023.1168548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 07/11/2024]
Abstract
The retinal neural circuit is intricately wired for efficient processing of visual signals. This is well-supported by the specialized connections between retinal neurons at both the functional and ultrastructural levels. Through 3D electron microscopic (EM) reconstructions of retinal neurons and circuits we have learnt much about the specificities of connections within the retinal layers including new insights into how retinal neurons establish connections and perform sophisticated visual computations. This mini-review will summarize the retinal circuitry and provide details about the novel insights EM connectomics has brought into our understanding of the retinal circuitry. We will also discuss unresolved questions about the retinal circuitry that can be addressed by EM connectomics in the future.
Collapse
Affiliation(s)
- Abhilash Sawant
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Aindrila Saha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Jacob Khoussine
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Raunak Sinha
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Martin PR. The Verriest Lecture: Pathways to color in the eye and brain. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:V1-V10. [PMID: 37133001 DOI: 10.1364/josaa.480106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In common with the majority of New World monkeys, marmosets show polymorphic color vision by allelic variation of X-chromosome genes encoding opsin pigments in the medium/long wavelength range. Male marmosets are thus obligate dichromats ("red-green color blind"), whereas females carrying distinct alleles on X chromosomes show one of three trichromatic phenotypes. Marmosets thus represent a "natural knock-out" system enabling comparison of red-green color vision in dichromatic and trichromatic visual systems. Further, study of short-wave (blue) cone pathways in marmosets has provided insights into primitive visual pathways for depth perception and attention. These investigations represent a parallel line to clinical research on color vision defects that was pioneered in studies by Guy Verreist, whom we honor in this eponymous lecture.
Collapse
|
11
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|
12
|
Li P, Garg AK, Zhang LA, Rashid MS, Callaway EM. Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms. Nat Commun 2022; 13:6344. [PMID: 36284139 PMCID: PMC9596481 DOI: 10.1038/s41467-022-34020-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Studies of color perception have led to mechanistic models of how cone-opponent signals from retinal ganglion cells are integrated to generate color appearance. But it is unknown how this hypothesized integration occurs in the brain. Here we show that cone-opponent signals transmitted from retina to primary visual cortex (V1) are integrated through highly organized circuits within V1 to implement the color opponent interactions required for color appearance. Combining intrinsic signal optical imaging (ISI) and 2-photon calcium imaging (2PCI) at single cell resolution, we demonstrate cone-opponent functional domains (COFDs) that combine L/M cone-opponent and S/L + M cone-opponent signals following the rules predicted from psychophysical studies of color perception. These give rise to an orderly organization of hue preferences of the neurons within the COFDs and the generation of hue "pinwheels". Thus, spatially organized neural circuits mediate an orderly transition from cone-opponency to color appearance that begins in V1.
Collapse
Affiliation(s)
- Peichao Li
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Anupam K Garg
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Wilmer Eye Institute, Johns Hopkins University, 600N Wolfe Street, Baltimore, MD, 21287, USA
| | - Li A Zhang
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Jin H, Yu X, Cao S, Wang M, Hu X, Ye J, Liu W, Xu M, Wu W, Tu Y. Selective deficits of S-cone in thyroid-associated ophthalmopathy patients without clinical signs of dysthyroid optic neuropathy. Front Neurosci 2022; 16:990425. [PMID: 36213732 PMCID: PMC9532696 DOI: 10.3389/fnins.2022.990425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose We explored whether thyroid-associated ophthalmopathy (TAO) patients without clinical signs of dysthyroid optic neuropathy (DON) would have a selective deficit mediated by S-cone. Methods Thirty-two TAO patients without clinical signs of DON (non-DON, 42.03 ± 9.59 years old) and 27 healthy controls (41.46 ± 6.72 years old) participated in this prospective, cross-sectional study. All observers were tested psychophysically after passing color screening tests and a comprehensive ocular examination. Isolated L-, M-, and S-cone contrast thresholds were measured at 0.5 cyc/deg using Gabor patches. We calculated the area under the receiver operating characteristic (ROC) curve to quantify the ability of chromatic contrast sensitivity to detect the early visual function changes in non-DON patients. Results S-cone contrast sensitivity in non-DON patients was found to be lower than that of healthy controls (P < 0.001), whereas the sensitivities to L- and M-cone Gabor patches were similar between these two groups (P = 0.297, 0.666, respectively). Our analysis of the ROC curve revealed that the sensitivity to S-cone had the highest index to discriminate non-DON patients from healthy controls (AUC = 0.846, P < 0.001). The deficit of S-cone was significantly correlated with muscle index in non-DON patients (R = 0.576, P = 0.001). Conclusion There is a selective S-cone deficit in the early stage of TAO. S-cone contrast sensitivity could serve as a sensitive measure of visual impairments associated with early DON in patients with TAO.
Collapse
|
14
|
Albargothy MJ, Azizah NN, Stewart SL, Troendle EP, Steel DHW, Curtis TM, Taggart MJ. Investigation of heterocellular features of the mouse retinal neurovascular unit by 3D electron microscopy. J Anat 2022. [PMID: 35841597 DOI: 10.1111/joa.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
The retina has a complex structure with a diverse collection of component cells that work together to facilitate vision. The retinal capillaries supplying the nutritional requirements to the inner retina have an intricate system of neural, glial and vascular elements that interconnect to form the neurovascular unit (NVU). The retina has no autonomic nervous system and so relies on the NVU as an interdependent, physical and functional unit to alter blood flow appropriately to changes in the physiological environment. The importance of this is demonstrated by alterations in NVU function being apparent in the blinding disease diabetic retinopathy and other diseases of the retina. It is, therefore, imperative to understand the anatomy of the components of the NVU that underlie its functioning and in particular the nanoscale arrangements of its heterocellular components. However, information on this in three spatial dimensions is limited. In the present study, we utilised the technique of serial block-face scanning electron microscopy (SBF-SEM), and computational image reconstruction, to enable the first three-dimensional ultrastructural analysis of the NVU in mouse retinal capillaries. Mouse isolated retina was prepared for SBF-SEM and up to 150 serial scanning electron microscopy images (covering z-axes distances of 12-8 mm) of individual capillaries in the superficial plexus and NVU cellular components digitally aligned. Examination of the data in the x-, y- and z-planes was performed with the use of semi-automated computational image analysis tools including segmentation, 3D image reconstruction and quantitation of cell proximities. A prominent feature of the capillary arrangements in 3D was the extensive sheath-like coverage by singular pericytes. They appeared in close register to the basement membrane with which they interwove in a complex mesh-like appearance. Breaks in the basement membrane appeared to facilitate pericyte interactions with other NVU cell types. There were frequent, close (<10 nm) pericyte-endothelial interactions with direct contact points and peg-and-socket-like morphology. Macroglia typically intervened between neurons and capillary structures; however, regions were identified where neurons came into closer contact with the basement membrane. A software-generated analysis to assess the morphology of the different cellular components of the NVU, including quantifications of convexity, sphericity and cell-to-cell closeness, has enabled preliminary semi-quantitative characterisation of cell arrangements with neighbouring structures. This study presents new data on the nanoscale spatial characteristics of components of the murine retinal NVU in 3D that has implications for our understanding of structural integrity (e.g. pericyte-endothelial cell anchoring) and function (e.g. possible paracrine communication between macroglia and pericytes). It also serves as a platform to inform future studies examining changes in NVU characteristics with different biological and disease circumstances. All raw and processed image data have been deposited for public viewing.
Collapse
Affiliation(s)
- Mona J Albargothy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nadhira N Azizah
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah L Stewart
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Evan P Troendle
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tim M Curtis
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Michael J Taggart
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Abstract
In our tendency to discuss the objective properties of the external world, we may fail to notice that our subjective perceptions of those properties differ between individuals. Variability at all levels of the color vision system creates diversity in color perception, from discrimination to color matching, appearance, and subjective experience, such that each of us lives in a unique perceptual world. In this review, I discuss what is known about individual differences in color perception and its determinants, particularly considering genetically mediated variability in cone photopigments and the paradoxical effects of visual environments in both contributing to and counteracting individual differences. I make the case that, as well as being of interest in their own right and crucial for a complete account of color vision, individual differences can be used as a methodological tool in color science for the insights that they offer about the underlying mechanisms of perception. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jenny M Bosten
- School of Psychology, University of Sussex, Brighton, United Kingdom;
| |
Collapse
|
16
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
17
|
Gunther KL. Non-cardinal color mechanism elicitation by stimulus shape: Bringing the S versus L+M color plane to the table. J Vis 2022; 22:5. [PMID: 35416933 PMCID: PMC9012893 DOI: 10.1167/jov.22.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neurons in the cortex typically respond best to elongated stimuli, or gratings, whereas neurons in the lateral geniculate nucleus (LGN) typically prefer circular stimuli, or spots. Further, neural mechanisms specifically tuned for non-cardinal colors largely do not emerge until the cortex; therefore, the use of gratings should better reveal non-cardinal color mechanisms. This hypothesis has been tested in the isoluminant color plane in macaque monkeys (Stoughton, Lafer-Sousa, Gagin, & Conway, 2012) and in the L–M versus L+M color plane in human subjects (Gegenfurtner & Kiper, 1992). Here, this hypothesis was tested in the third color plane, S versus L+M, in human subjects in two experiments. Experiment 1 tested 10 subjects across four directions in this color plane; Experiment 2 tested three subjects in eight to twelve color directions. Consistent with data from the other two color planes, in both experiments in the S versus L+M color plane, gratings revealed the presence of non-cardinal mechanisms more strongly than did spots.
Collapse
Affiliation(s)
- Karen L Gunther
- Psychology Department, Wabash College, Crawfordsville, IN, USA.,
| |
Collapse
|
18
|
De A, Horwitz GD. Coding of chromatic spatial contrast by macaque V1 neurons. eLife 2022; 11:68133. [PMID: 35147497 PMCID: PMC8920507 DOI: 10.7554/elife.68133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Color perception relies on comparisons between adjacent lights, but how the brain performs these comparisons is poorly understood. To elucidate the underlying neural mechanisms, we recorded spiking responses of individual V1 neurons in macaque monkeys to pairs of stimuli within the classical receptive field (RF). We estimated the spatial-chromatic RF of each neuron and then presented customized colored edges using a novel closed-loop technique. We found that many double-opponent (DO) cells, which have spatially and chromatically opponent RFs, responded to chromatic contrast as a weighted sum, akin to how other V1 cells responded to luminance contrast. Yet other neurons integrated chromatic signals non-linearly, confirming that linear signal integration is not an obligate property of V1 neurons. The functional similarity of cone-opponent DO cells and cone non-opponent simple cells suggests that these two groups may share a common underlying neural circuitry, promotes the construction of image-computable models for full-color image representation, and sheds new light on V1 complex cells.
Collapse
Affiliation(s)
- Abhishek De
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
19
|
Kanematsu T, Koida K. Influence of Stimulus Size on Simultaneous Chromatic Induction. Front Psychol 2022; 13:818149. [PMID: 35140670 PMCID: PMC8818722 DOI: 10.3389/fpsyg.2022.818149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chromatic induction is a major contextual effect of color appearance. Patterned backgrounds are known to induce strong chromatic induction effects. However, it has not been clarified whether the spatial extent of the chromatic surrounding induces a chromatic contrast or assimilation effects. In this study, we examined the influence of the width of a center line and its flanking white contour on the color appearance when the line was surrounded by chromatic backgrounds. A strong color shift was observed when the center line was flanked by white contours with the L/M- and S-cone chromatic backgrounds. There was a difference between the optimal widths of the center line and the contour for the shift in color appearance for the L/M-cone chromaticity (0.9 and 1.1–1.7 min, respectively) and the S-cone chromaticity (8.2–17.5 and 0.9–2.5 min, respectively). The optimal width of the center line for the L/M-cone was finer than the resolution-limit width of the chromatic contrast sensitivity and coarser than that of the luminance contrast sensitivity. Thus, the color appearance of the center line could be obtained by integrating broad chromatic information and fine luminance details. Due to blurring and chromatic aberrations, the simulated artifact was large for the darker center line and S-cone background, thus suggesting that the artifact could explain the luminance dependency of the induction along the S-cone chromaticity. Moreover, the findings of this study reveal that the dominant factor of the color shift is neural instead of optical.
Collapse
Affiliation(s)
- Tama Kanematsu
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kowa Koida
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Japan
- *Correspondence: Kowa Koida,
| |
Collapse
|
20
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|
22
|
Abstract
Visual images can be described in terms of the illuminants and objects that are causal to the light reaching the eye, the retinal image, its neural representation, or how the image is perceived. Respecting the differences among these distinct levels of description can be challenging but is crucial for a clear understanding of color vision. This article approaches color by reviewing what is known about its neural representation in the early visual cortex, with a brief description of signals in the eye and the thalamus for context. The review focuses on the properties of single neurons and advances the general theme that experimental approaches based on knowledge of feedforward signals have promoted greater understanding of the neural code for color than approaches based on correlating single-unit responses with color perception. New data from area V1 illustrate the strength of the feedforward approach. Future directions for progress in color neurophysiology are discussed: techniques for improved single-neuron characterization, for investigations of neural populations and small circuits, and for the analysis of natural image statistics.
Collapse
Affiliation(s)
- Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA; .,Washington National Primate Research Center, University of Washington, Seattle, Washington 98121, USA
| |
Collapse
|
23
|
Talapka P, Kocsis Z, Marsi LD, Szarvas VE, Kisvárday ZF. Application of the Mirror Technique for Three-Dimensional Electron Microscopy of Neurochemically Identified GABA-ergic Dendrites. Front Neuroanat 2021; 15:652422. [PMID: 33958990 PMCID: PMC8093522 DOI: 10.3389/fnana.2021.652422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
In the nervous system synaptic input arrives chiefly on dendrites and their type and distribution have been assumed pivotal in signal integration. We have developed an immunohistochemistry (IH)-correlated electron microscopy (EM) method – the “mirror” technique – by which synaptic input to entire dendrites of neurochemically identified interneurons (INs) can be mapped due preserving high-fidelity tissue ultrastructure. Hence, this approach allows quantitative assessment of morphometric parameters of synaptic inputs along the whole length of dendrites originating from the parent soma. The method exploits the fact that adjoining sections have truncated or cut cell bodies which appear on the common surfaces in a mirror fashion. In one of the sections the histochemical marker of the GABAergic subtype, calbindin was revealed in cell bodies whereas in the other section the remaining part of the very same cell bodies were subjected to serial section EM to trace and reconstruct the synaptology of entire dendrites. Here, we provide exemplary data on the synaptic coverage of two dendrites belonging to the same calbindin-D28K immunopositive IN and determine the spatial distribution of asymmetric and symmetric synapses, surface area and volume of the presynaptic boutons, morphometric parameters of synaptic vesicles, and area extent of the active zones.
Collapse
Affiliation(s)
- Petra Talapka
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Kocsis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Diána Marsi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Etelka Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán F Kisvárday
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Vaphiades MS, Grondines BD, Curcio CA. Erythropsia and Chromatopsia: Case Study and Brief Review. Neuroophthalmology 2021; 45:56-60. [PMID: 33762791 DOI: 10.1080/01658107.2020.1797824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A 65-year-old woman presented with erythropsia (red-tinged vision) in the right eye from a subfoveal macula dehaemoglobinised intraretinal haemorrhage. Erythropsia is a type of chromatopsia, a condition in which objects appear to be abnormally coloured or tinged with colour. This manuscript provides a brief review of colour vision abnormalities including chromatopsia, and additionally we discuss dyschromatopsia and achromatopsia defined as deficiency and absence of colour vision respectively, both of which may be congenital or acquired. We theorise that the mechanism of the chromatopsia may be selective damage of ganglion cells involved in colour opponency.
Collapse
Affiliation(s)
| | | | - Christine A Curcio
- Departments of Ophthalmology, University of Alabama, Birmingham, Alabama
| |
Collapse
|
25
|
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12:661938. [PMID: 34093409 PMCID: PMC8175861 DOI: 10.3389/fneur.2021.661938] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the bridging neurons that connect the retinal input to the visual processing centres within the central nervous system. There is a remarkable diversity of RGCs and the various subtypes have unique morphological features, distinct functions, and characteristic pathways linking the inner retina to the relevant brain areas. A number of psychophysical and electrophysiological tests have been refined to investigate this large and varied population of RGCs. Technological advances, such as high-resolution optical coherence tomography imaging, have provided additional tools to define the pattern of RGC involvement and the chronological sequence of events in both inherited and acquired optic neuropathies. The mechanistic insights gained from these studies, in particular the selective vulnerability and relative resilience of particular RGC subtypes, are of fundamental importance as they are directly relevant to the development of targeted therapies for these invariably progressive blinding diseases. This review provides a comprehensive description of the various types of RGCs, the developments in proposed methods of classification, and the current gaps in our knowledge of how these RGCs are differentially affected depending on the underlying aetiology. The synthesis of the current body of knowledge on the diversity of RGCs and the pathways that are potentially amenable to therapeutic modulation will hopefully lead to much needed effective treatments for patients with optic neuropathies.
Collapse
Affiliation(s)
- Ungsoo Samuel Kim
- Kim's Eye Hospital, Seoul, South Korea
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Ungsoo Samuel Kim
| | - Omar A. Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Section of Ophthalmology, King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Solomon SG. Retinal ganglion cells and the magnocellular, parvocellular, and koniocellular subcortical visual pathways from the eye to the brain. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:31-50. [PMID: 33832683 DOI: 10.1016/b978-0-12-821377-3.00018-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In primates including humans, most retinal ganglion cells send signals to the lateral geniculate nucleus (LGN) of the thalamus. The anatomical and functional properties of the two major pathways through the LGN, the parvocellular (P) and magnocellular (M) pathways, are now well understood. Neurones in these pathways appear to convey a filtered version of the retinal image to primary visual cortex for further analysis. The properties of the P-pathway suggest it is important for high spatial acuity and red-green color vision, while those of the M-pathway suggest it is important for achromatic visual sensitivity and motion vision. Recent work has sharpened our understanding of how these properties are built in the retina, and described subtle but important nonlinearities that shape the signals that cortex receives. In addition to the P- and M-pathways, other retinal ganglion cells also project to the LGN. These ganglion cells are larger than those in the P- and M-pathways, have different retinal connectivity, and project to distinct regions of the LGN, together forming heterogenous koniocellular (K) pathways. Recent work has started to reveal the properties of these K-pathways, in the retina and in the LGN. The functional properties of K-pathways are more complex than those in the P- and M-pathways, and the K-pathways are likely to have a distinct contribution to vision. They provide a complementary pathway to the primary visual cortex, but can also send signals directly to extrastriate visual cortex. At the level of the LGN, many neurones in the K-pathways seem to integrate retinal with non-retinal inputs, and some may provide an early site of binocular convergence.
Collapse
Affiliation(s)
- Samuel G Solomon
- Department of Experimental Psychology, University College London, London, United Kingdom.
| |
Collapse
|
27
|
Circuit Reorganization Shapes the Developing Human Foveal Midget Connectome toward Single-Cone Resolution. Neuron 2020; 108:905-918.e3. [PMID: 33027639 DOI: 10.1016/j.neuron.2020.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The human visual pathway is specialized for the perception of fine spatial detail. The neural circuitry that determines visual acuity begins in the retinal fovea, where the resolution afforded by a dense array of cone photoreceptors is preserved in the retinal output by a remarkable non-divergent circuit: cone → midget bipolar interneuron → midget ganglion cell (the "private line"). How the private line develops is unknown; it could involve early specification of extremely precise synaptic connections or, by contrast, emerge slowly in concordance with the gradual maturation of foveal architecture and visual sensitivity. To distinguish between these hypotheses, we reconstructed the midget circuitry in the fetal human fovea by serial electron microscopy. We discovered that the midget private line is sculpted by synaptic remodeling beginning early in fetal life, with midget bipolar cells contacting a single cone by mid-gestation and bipolar cell-ganglion cell connectivity undergoing a more protracted period of refinement.
Collapse
|
28
|
Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D, Schubert T, Euler T, Franke K. Neural circuits in the mouse retina support color vision in the upper visual field. Nat Commun 2020; 11:3481. [PMID: 32661226 PMCID: PMC7359335 DOI: 10.1038/s41467-020-17113-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Color vision is essential for an animal’s survival. It starts in the retina, where signals from different photoreceptor types are locally compared by neural circuits. Mice, like most mammals, are dichromatic with two cone types. They can discriminate colors only in their upper visual field. In the corresponding ventral retina, however, most cones display the same spectral preference, thereby presumably impairing spectral comparisons. In this study, we systematically investigated the retinal circuits underlying mouse color vision by recording light responses from cones, bipolar and ganglion cells. Surprisingly, most color-opponent cells are located in the ventral retina, with rod photoreceptors likely being involved. Here, the complexity of chromatic processing increases from cones towards the retinal output, where non-linear center-surround interactions create specific color-opponent output channels to the brain. This suggests that neural circuits in the mouse retina are tuned to extract color from the upper visual field, aiding robust detection of predators and ensuring the animal’s survival. Mice are able to discriminate colors, at least in the upper visual field. Here, the authors provide a comprehensive characterization of retinal circuits underlying this behavior.
Collapse
Affiliation(s)
- Klaudia P Szatko
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Mehrani P, Mouraviev A, Tsotsos JK. Multiplicative modulations enhance diversity of hue-selective cells. Sci Rep 2020; 10:8491. [PMID: 32444800 PMCID: PMC7244512 DOI: 10.1038/s41598-020-64969-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
There is still much to understand about the brain's colour processing mechanisms and the transformation from cone-opponent representations to perceptual hues. Moreover, it is unclear which area(s) in the brain represent unique hues. We propose a hierarchical model inspired by the neuronal mechanisms in the brain for local hue representation, which reveals the contributions of each visual cortical area in hue representation. Hue encoding is achieved through incrementally increasing processing nonlinearities beginning with cone input. Besides employing nonlinear rectifications, we propose multiplicative modulations as a form of nonlinearity. Our simulation results indicate that multiplicative modulations have significant contributions in encoding of hues along intermediate directions in the MacLeod-Boynton diagram and that our model V2 neurons have the capacity to encode unique hues. Additionally, responses of our model neurons resemble those of biological colour cells, suggesting that our model provides a novel formulation of the brain's colour processing pathway.
Collapse
Affiliation(s)
- Paria Mehrani
- The Center for Vision Research, York University, Toronto, M3J 1P3, Canada.
| | - Andrei Mouraviev
- The Center for Vision Research, York University, Toronto, M3J 1P3, Canada
| | - John K Tsotsos
- The Center for Vision Research, York University, Toronto, M3J 1P3, Canada
| |
Collapse
|
30
|
Danilova MV, Mollon JD. Discrimination of hue angle and discrimination of colorimetric purity assessed with a common metric. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:A226-A236. [PMID: 32400547 DOI: 10.1364/josaa.382382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
It has been suggested that thresholds for discriminating colorimetric purity are systematically higher than those for discriminating hue angle, a difference captured in Judd's phrase "the super-importance of hue." However, to compare the two types of discrimination, the measured thresholds must be expressed in the same units. An attractive test is offered by measurements along the horizontal lines in the chromaticity diagram of MacLeod and Boynton [ J. Opt. Soc. Am.69, 1183 (1979)JOSAAH0030-394110.1364/JOSA.69.001183], i.e., a chromaticity diagram. A horizontal line that extends radially from the white point represents a variation in colorimetric purity alone (and subjectively a variation that is primarily in saturation). In contrast, a horizontal line that runs along the $x$x axis of the diagram, close to the long-wave spectrum locus, corresponds predominantly to variation in hue angle. Yet, in both cases, only the ratio of the excitations of the long- and middle-wave cones is being modulated, and so the thresholds can be expressed in a common metric. Measuring forced-choice thresholds for 180 ms foveal targets presented on a steady field metameric to Illuminant D65, we do not find general support for Judd's working rule that thresholds for purity are systematically twice those for saturation. Thresholds for colorimetric purity were only a little higher than those for hue angle, and the advantage for hue was seen in only part of the ranges that were tested. However, in the upper-left quadrant of the MacLeod-Boynton diagram, where the excitation of short-wave cones is high and where both hue angle and colorimetric purity vary along any given horizontal line, thresholds were indeed sometimes half those observed for discrimination of purity alone.
Collapse
|
31
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
32
|
|