1
|
Fortier-Lebel N, Nakajima T. Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion. Neuroscientist 2024:10738584241263758. [PMID: 39041460 DOI: 10.1177/10738584241263758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.
Collapse
Affiliation(s)
- Nicolas Fortier-Lebel
- Département de neurosciences, Département de médecine, Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, Canada
| | - Toshi Nakajima
- Department of Physiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
2
|
Wang A, Dong T, Wei T, Wu H, Yang Y, Ding Y, Li C, Yang W. Large-scale networks changes in Wilson's disease associated with neuropsychiatric impairments: a resting-state functional magnetic resonance imaging study. BMC Psychiatry 2023; 23:805. [PMID: 37924073 PMCID: PMC10623710 DOI: 10.1186/s12888-023-05236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND In Wilson's disease (WD) patients, network connections across the brain are disrupted, affecting multidomain function. However, the details of this neuropathophysiological mechanism remain unclear due to the rarity of WD. In this study, we aimed to investigate alterations in brain network connectivity at the whole-brain level (both intra- and inter-network) in WD patients through independent component analysis (ICA) and the relationship between alterations in these brain network functional connections (FCs) and clinical neuropsychiatric features to understand the underlying pathophysiological and central compensatory mechanisms. METHODS Eighty-five patients with WD and age- and sex-matched 85 healthy control (HC) were recruited for resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We extracted the resting-state networks (RSNs) using the ICA method, analyzed the changes of FC in these networks and the correlation between alterations in FCs and clinical neuropsychiatric features. RESULTS Compared with HC, WD showed widespread lower connectivity within RSNs, involving default mode network (DMN), frontoparietal network (FPN), somatomotor network (SMN), dorsal attention network (DAN), especially in patients with abnormal UWDRS scores. Furthermore, the decreased FCs in the left medial prefrontal cortex (L_ MPFC), left anterior cingulate gyrus (L_ACC), precuneus (PCUN)within DMN were negatively correlated with the Unified Wilson's Disease Rating Scale-neurological characteristic examination (UWDRS-N), and the decreased FCs in the L_MPFC, PCUN within DMN were negatively correlated with the Unified Wilson's Disease Rating Scale-psychiatric symptoms examination (UWDRS-P). We additionally discovered that the patients with WD exhibited significantly stronger FC between the FPN and DMN, between the DAN and DMN, and between the FPN and DAN compared to HC. CONCLUSIONS We have provided evidence that WD is a disease with widespread dysfunctional connectivity in resting networks in brain, leading to neurological features and psychiatric symptoms (e.g. higher-order cognitive control and motor control impairments). The alter intra- and inter-network in the brain may be the neural underpinnings for the neuropathological symptoms and the process of injury compensation in WD patients.
Collapse
Affiliation(s)
- Anqin Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Ting Dong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
- Xin 'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Institute of Great Health, Hefei National Science Center, Hefei, China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Taohua Wei
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
- Xin 'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Institute of Great Health, Hefei National Science Center, Hefei, China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Hongli Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yulong Yang
- Xin 'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Institute of Great Health, Hefei National Science Center, Hefei, China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yufeng Ding
- Xin 'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Institute of Great Health, Hefei National Science Center, Hefei, China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chuanfu Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Xin 'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Institute of Great Health, Hefei National Science Center, Hefei, China.
- Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China.
| |
Collapse
|
3
|
Nakajima T, Fortier-Lebel N, Drew T. A secondary motor area contributing to interlimb coordination during visually guided locomotion in the cat. Cereb Cortex 2022; 33:290-315. [PMID: 35259760 PMCID: PMC9837607 DOI: 10.1093/cercor/bhac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/19/2023] Open
Abstract
We investigated the contribution of cytoarchitectonic cortical area 4δc, in the caudal bank of the cruciate sulcus of the cat, to the control of visually guided locomotion. To do so, we recorded the activity of 114 neurons in 4δc while cats walked on a treadmill and stepped over an obstacle that advanced toward them. A total of 84/114 (74%) cells were task-related and 68/84 (81%) of these cells showed significant modulation of their discharge frequency when the contralateral limbs were the first to step over the obstacle. These latter cells included a substantial proportion (27/68 40%) that discharged between the passage of the contralateral forelimb and the contralateral hindlimb over the obstacle, suggesting a contribution of this area to interlimb coordination. We further compared the discharge in area 4δc with the activity patterns of cells in the rostral division of the same cytoarchitectonic area (4δr), which has been suggested to be a separate functional region. Despite some differences in the patterns of activity in the 2 subdivisions, we suggest that activity in each is compatible with a contribution to interlimb coordination and that they should be considered as a single functional area that contributes to both forelimb-forelimb and forelimb-hindlimb coordination.
Collapse
Affiliation(s)
- Toshi Nakajima
- Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nicolas Fortier-Lebel
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Trevor Drew
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Nakajima T, Hosaka R, Mushiake H. Complementary Roles of Primate Dorsal Premotor and Pre-Supplementary Motor Areas to the Control of Motor Sequences. J Neurosci 2022; 42:6946-6965. [PMID: 35970560 PMCID: PMC9463987 DOI: 10.1523/jneurosci.2356-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
We are able to temporally organize multiple movements in a purposeful manner in everyday life. Both the dorsal premotor (PMd) area and pre-supplementary motor area (pre-SMA) are known to be involved in the performance of motor sequences. However, it is unclear how each area differentially contributes to controlling multiple motor sequences. To address this issue, we recorded single-unit activity in both areas while monkeys (one male, one female) performed sixteen motor sequences. Each sequence comprised either a series of two identical movements (repetition) or two different movements (nonrepetition). The sequence was initially instructed with visual signals but had to be remembered thereafter. Here, we showed that the activity of single neurons in both areas transitioned from reactive- to predictive encoding while motor sequences were memorized. In the memory-guided trials, in particular, the activity of PMd cells preferentially represented the second movement (2M) in the sequence leading to a reward generally regardless of the first movement (1M). Such activity frequently began even before the 1M in a prospective manner, and was enhanced in nonrepetition sequences. Behaviorally, a lack of the activity enhancement often resulted in premature execution of the 2M. In contrast, cells in pre-SMA instantiated particular sequences of actions by coordinating switching or nonswitching movements in sequence. Our findings suggest that PMd and pre-SMA play complementary roles within behavioral contexts: PMd preferentially controls the movement that leads to a reward rather than the sequence per se, whereas pre-SMA coordinates all elements in a sequence by integrating temporal orders of multiple movements.SIGNIFICANCE STATEMENT Although both dorsal premotor (PMd) area and pre-supplementary motor area (pre-SMA) are involved in the control of motor sequences, it is not clear how these two areas contribute to coordination of sequential movements differently. To address this issue, we directly compared neuronal activity in the two areas recorded while monkeys memorized and performed multiple motor sequences. Our findings suggest that PMd preferentially controls the final action that ultimately leads to a reward in a prospective manner, whereas the pre-SMA coordinates switching among multiple actions within the context of the sequence. Our findings are of significance to understand the distinct roles for motor-related areas in the planning and executing motor sequences and the pathophysiology of apraxia and/or Parkinson's diseases that disables skilled motor actions.
Collapse
Affiliation(s)
- Toshi Nakajima
- Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ryosuke Hosaka
- Department of Electronic Information Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Si L, Cui B, Li Z, Li X, Li K, Ling X, Shen B, Yang X. Altered Resting-State Intranetwork and Internetwork Functional Connectivity in Patients With Chronic Unilateral Vestibulopathy. J Magn Reson Imaging 2021; 56:291-300. [PMID: 34921750 PMCID: PMC9299943 DOI: 10.1002/jmri.28031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chronic unilateral vestibulopathy (CUVP) is often accompanied by dizziness and postural instability, which restrict patients' daily activities. It is important to understand central compensation mechanisms underlying these symptoms in patients with CUVP by evaluating their brain functional status. PURPOSE To analyze the changes in resting-state intranetwork and internetwork functional connectivity (FC) and explore the state of central vestibular compensation in patients with CUVP. STUDY TYPE Retrospective. POPULATION Eighteen patients with right-sided CUVP and 18 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE A 3.0 T, three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) and resting-state echo-planar imaging (EPI) functional MRI sequences. ASSESSMENT FC alterations were explored using independent component analysis (ICA). Twelve independent components were identified via ICA. Dizziness Handicap Inventory (DHI) score for all patients was determined. STATISTICAL TESTS Two-sample t test, family-wise error (FWE) correction, Pearson correlation coefficient (r). A P value <0.05 was considered statistically significant. RESULTS Compared with healthy controls, patients with CUVP showed significantly decreased FC in the right middle occipital gyrus within the lateral visual network, and significantly increased FC in the right supplementary motor area within the sensorimotor network. The FC was decreased between the medial visual and auditory networks, the right frontoparietal and posterior default networks, as well as the sensorimotor and auditory networks. There was a significant negative correlation between the FC changes in the visual, auditory networks and the DHI score in patients with CUVP (r = -0.583). DATA CONCLUSION Compared to healthy controls, the FC was significantly decreased in the right visual cortex and significantly enhanced in the right sensorimotor network in patients with CUVP. Patients with CUVP showed decreased FC between multiple whole-brain networks, suggesting that abnormal integration of multisensory information may be involved in the occurrence of chronic dizziness and instability in patients with CUVP. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lihong Si
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Zheyuan Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Xiang Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Kangzhi Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Xia Ling
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Bo Shen
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Xu Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| |
Collapse
|
6
|
Nakajima T, Fortier-Lebel N, Drew T. Premotor Cortex Provides a Substrate for the Temporal Transformation of Information During the Planning of Gait Modifications. Cereb Cortex 2020; 29:4982-5008. [PMID: 30877802 DOI: 10.1093/cercor/bhz039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
We tested the hypothesis that the premotor cortex (PMC) in the cat contributes to the planning and execution of visually guided gait modifications. We analyzed single unit activity from 136 cells localized within layer V of cytoarchitectonic areas 6iffu and that part of 4δ within the ventral bank of the cruciate sulcus while cats walked on a treadmill and stepped over an obstacle that advanced toward them. We found a rich variety of discharge patterns, ranging from limb-independent cells that discharged several steps in front of the obstacle to step-related cells that discharged either during steps over the obstacle or in the steps leading up to that step. We propose that this population of task-related cells within this region of the PMC contributes to the temporal evolution of a planning process that transforms global information of the presence of an obstacle into the precise spatio-temporal limb adjustment required to negotiate that obstacle.
Collapse
Affiliation(s)
- Toshi Nakajima
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University 2-1, 1-1, Midorigaoka-Higashi, Asahikawa, Japan
| | - Nicolas Fortier-Lebel
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada
| | - Trevor Drew
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada
| |
Collapse
|
7
|
Pinet S, Dell GS, Alario FX. Tracking Keystroke Sequences at the Cortical Level Reveals the Dynamics of Serial Order Production. J Cogn Neurosci 2019; 31:1030-1043. [DOI: 10.1162/jocn_a_01401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Response selection is often studied by examining single responses, although most actions are performed within an overarching sequence. Understanding processes that order and execute items in a sequence is thus essential to give a complete picture of response selection. In this study, we investigate response selection by comparing single responses and response sequences as well as unimanual and bimanual sequences. We recorded EEG while participants were typing one- or two-keystroke sequences. Irrespective of stimulus modality (visual or auditory), response-locked analysis revealed distinct contralateral and ipsilateral components previously associated with activation and inhibition of alternative responses. Unimanual sequences exhibited a similar activation/inhibition pattern as single responses, but with the activation component of the pattern expressed more strongly, reflecting the fact that the hand will be used for two strokes. In contrast, bimanual sequences were associated with successive activation of each of the corresponding motor cortices controlling each keystroke and no traceable inhibitory component. In short, the activation component of the two-keystroke sequence EEG pattern can be understood from the addition of activation components of single-stroke sequences; the inhibition of the hand not being used is only evidenced when that hand is not planned for the next stroke.
Collapse
Affiliation(s)
- Svetlana Pinet
- Aix-Marseille University, CNRS, LPC
- Johns Hopkins University
| | | | | |
Collapse
|
8
|
Perturbation of Macaque Supplementary Motor Area Produces Context-Independent Changes in the Probability of Movement Initiation. J Neurosci 2019; 39:3217-3233. [PMID: 30755488 DOI: 10.1523/jneurosci.2335-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/26/2023] Open
Abstract
The contribution of the supplementary motor area (SMA) to movement initiation remains unclear. SMA exhibits premovement activity across a variety of contexts, including externally cued and self-initiated movements. Yet SMA lesions impair initiation primarily for self-initiated movements. Does SMA influence initiation across contexts or does it play a more specialized role, perhaps contributing only when initiation is less dependent on external cues? To address this question, we perturbed SMA activity via microstimulation at variable times before movement onset. Experiments used two adult male rhesus monkeys trained on a reaching task. We used three contexts that differed regarding how tightly movement initiation was linked to external cues. Movement kinematics were not altered by microstimulation. Instead, microstimulation induced a variety of changes in the timing of movement initiation, with different effects dominating for different contexts. Despite their diversity, these changes could be explained by a simple model where microstimulation has a stereotyped impact on the probability of initiation. Surprisingly, a unified model accounted for effects across all three contexts, regardless of whether initiation was determined more by external cues versus internal considerations. All effects were present for stimulation both contralateral and ipsilateral to the moving arm. Thus, the probability of initiating a pending movement is altered by perturbation of SMA activity. However, changes in initiation probability are independent of the balance of internal and external factors that establish the baseline initiation probability.SIGNIFICANCE STATEMENT The role of the supplementary motor area (SMA) in initiating movement remains unclear. Lesion experiments suggest that SMA makes a critical contribution only for self-initiated movements. Yet SMA is active before movements made under a range of contexts, suggesting a less-specialized role in movement initiation. Here, we use microstimulation to probe the role of SMA across a range of behavioral contexts that vary in the degree to which movement onset is influenced by external cues. We demonstrate that microstimulation produces a temporally stereotyped change in the probability of initiation that is independent of context. These results argue that SMA participates in the computations that lead to movement initiation and does so across a variety of contexts.
Collapse
|
9
|
Fujimoto H, Mihara M, Hattori N, Hatakenaka M, Yagura H, Kawano T, Miyai I, Mochizuki H. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. NEUROPHOTONICS 2017; 4:045003. [PMID: 29152530 PMCID: PMC5680482 DOI: 10.1117/1.nph.4.4.045003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/16/2017] [Indexed: 05/29/2023]
Abstract
Near-infrared spectroscopy-mediated neurofeedback (NIRS-NFB) is a promising therapeutic intervention for patients with neurological diseases. Studies have shown that NIRS-NFB can facilitate task-related cortical activation and induce task-specific behavioral changes. These findings indicate that the effect of neuromodulation depends on local cortical function. However, when the target cortical region has multiple functions, our understanding of the effects is less clear. This is true in the supplementary motor area (SMA), which is involved both in postural control and upper-limb movement. To address this issue, we investigated the facilitatory effect of NIRS SMA neurofeedback on cortical activity and behavior, without any specific task. Twenty healthy individuals participated in real and sham neurofeedback. Balance and hand dexterity were assessed before and after each NIRS-NFB session. We found a significant interaction between assessment periods (pre/post) and condition (real/sham) with respect to balance as assessed by the center of the pressure path length but not for hand dexterity as assessed by the 9-hole peg test. SMA activity only increased during real neurofeedback. Our findings indicate that NIRS-NFB itself has the potential to modulate focal cortical activation, and we suggest that it be considered a therapy to facilitate the SMA for patients with postural impairment.
Collapse
Affiliation(s)
- Hiroaki Fujimoto
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
| | - Masahito Mihara
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
- Kawasaki Medical School, Department of Neurology, Kurashiki, Okayama, Japan
| | - Noriaki Hattori
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
| | - Megumi Hatakenaka
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Hajime Yagura
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Teiji Kawano
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Ichiro Miyai
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Hideki Mochizuki
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
| |
Collapse
|
10
|
Nakajima T, Arisawa H, Hosaka R, Mushiake H. Intended arm use influences interhemispheric correlation of β-oscillations in primate medial motor areas. J Neurophysiol 2017; 118:2865-2883. [PMID: 28855290 DOI: 10.1152/jn.00379.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate the role of interhemispheric β-synchronization in the selection of motor effectors, we trained two monkeys to memorize and perform multiple two-movement sequences that included unimanual repetition and bimanual switching. We recorded local field potentials simultaneously in the bilateral supplementary motor area (SMA) and pre-SMA to examine how the β-power in both hemispheres and the interhemispheric relationship of β-oscillations depend on the prepared sequence of arm use. We found a significant ipsilateral enhancement of β-power for bimanual switching trials in the left hemisphere and an enhancement of β-power in the right SMA while preparing for unimanual repetition. Furthermore, interhemispheric synchrony in the SMA was significantly more enhanced while preparing unimanual repetition than while preparing bimanual switching. This enhancement of synchrony was detected in terms of β-phase but not in terms of modulation of β-power. Furthermore, the assessment of the interhemispheric phase difference revealed that the β-oscillation in the hemisphere contralateral to the instructed arm use significantly advanced its phase relative to that in the ipsilateral hemisphere. There was no arm use-dependent shift in phase difference in the pairwise recordings within each hemisphere. Both neurons with and without arm use-selective activity were phase-locked to the β-oscillation. These results imply that the degree of interhemispheric phase synchronization as well as phase differences and oscillatory power in the β-band may contribute to the selection of arm use depending on the behavioral conditions of sequential arm use.NEW & NOTEWORTHY We addressed interhemispheric relationships of β-oscillations during bimanual coordination. While monkeys prepared to initiate movement of the instructed arm, β-oscillations in the contralateral hemisphere showed a phase advance relative to the other hemisphere. Furthermore, the sequence of arm use influenced β-power and the degree of interhemispheric phase synchronization. Thus the dynamics of interhemispheric phases and power in β-oscillations may contribute to the specification of motor effectors in a given behavioral context.
Collapse
Affiliation(s)
- Toshi Nakajima
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Haruka Arisawa
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Ryosuke Hosaka
- Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan; and.,Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute, Wako, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan; .,Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan; and
| |
Collapse
|
11
|
Yokoyama O, Nakayama Y, Hoshi E. Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. J Neurophysiol 2016; 115:1556-76. [PMID: 26792884 DOI: 10.1152/jn.00882.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80-120 Hz) and theta (3-8 Hz) bands and a power decrease in the beta (12-30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
12
|
Hosaka R, Nakajima T, Aihara K, Yamaguchi Y, Mushiake H. The Suppression of Beta Oscillations in the Primate Supplementary Motor Complex Reflects a Volatile State During the Updating of Action Sequences. Cereb Cortex 2015; 26:3442-3452. [PMID: 26232988 DOI: 10.1093/cercor/bhv163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The medial motor areas play crucial but flexible roles in the temporal organizations of multiple movements. The beta oscillation of local field potentials is the predominant oscillatory activity in the motor areas, but the manner in which increases and decreases in beta power contribute to updating of multiple action plans is not yet fully understood. In the present study, beta and high-gamma activities in the supplementary motor area (SMA) and pre-SMA of monkeys were analyzed during performance of a bimanual motor sequence task that required updating and maintenance of the memory of action sequences. Beta power was attenuated during early delay periods of updating trials but was increased during maintenance trials, while there was a reciprocal increase in high-gamma power during updating trials. Moreover, transient attenuation of beta power during maintenance trials resulted in the erroneous selection of an action sequence. Therefore, it was concluded that the suppression of beta power during the early delay period reflects volatility of neural representation of the action sequence. This neural representation would be properly updated to the appropriate instructed action sequence via increases in high-gamma power in updating trials whereas it would be erroneously updated without the appropriate updating signal in maintenance trials.
Collapse
Affiliation(s)
- Ryosuke Hosaka
- Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan.,Neuroinformatics Japan Center, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Toshi Nakajima
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-1102, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yoko Yamaguchi
- Neuroinformatics Japan Center, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-1102, Japan
| |
Collapse
|
13
|
Nakayama Y, Yokoyama O, Hoshi E. Distinct neuronal organizations of the caudal cingulate motor area and supplementary motor area in monkeys for ipsilateral and contralateral hand movements. J Neurophysiol 2015; 113:2845-58. [PMID: 25717163 DOI: 10.1152/jn.00854.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study aimed to characterize the functional organization of these regions during movement by investigating laterality representations in the CMAc and SMA of monkeys via an examination of neuronal activity during a button press movement with either the right or left hand. Three types of movement-related neuronal activity were observed: 1) with only the contralateral hand, 2) with only the ipsilateral hand, and 3) with either hand. Neurons in the CMAc represented contralateral and ipsilateral hand movements to the same degree, whereas neuronal representations in the SMA were biased toward contralateral hand movement. Furthermore, recording neuronal activities using a linear-array multicontact electrode with 24 contacts spaced 150 μm apart allowed us to analyze the spatial distribution of neurons exhibiting particular hand preferences at the submillimeter scale. The CMAc and SMA displayed distinct microarchitectural organizations. The contralateral, ipsilateral, and bilateral CMAc neurons were distributed homogeneously, whereas SMA neurons exhibiting identical hand preferences tended to cluster. These findings indicate that the CMAc, which is functionally organized in a less structured manner than the SMA is, controls contralateral and ipsilateral hand movements in a counterbalanced fashion, whereas the SMA, which is more structured, preferentially controls contralateral hand movements.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and
| | - Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|