1
|
Zhang W, Zhang X, Lei M, Zhang D, Qin G, Zhou J, Ji L, Chen L. Dopamine D2 Receptor Activation Blocks GluA2/ROS Positive Feedback Loop to Alienate Chronic-Migraine-Associated Pain Sensitization. Antioxidants (Basel) 2024; 13:725. [PMID: 38929165 PMCID: PMC11201052 DOI: 10.3390/antiox13060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic migraine is a disabling disorder without effective therapeutic medicine. AMPA receptors have been proven to be essential to pathological pain and headaches, but the related regulatory mechanisms in chronic migraine have not yet been explored. In this study, we found that the level of surface GluA2 was reduced in chronic migraine rats. Tat-GluR23Y (a GluA2 endocytosis inhibitor) reduced calcium inward flow and weakened synaptic structures, thus alleviating migraine-like pain sensitization. In addition, the inhibition of GluA2 endocytosis reduced the calcium influx and alleviated mitochondrial calcium overload and ROS generation in primary neurons. Furthermore, our results showed that ROS can induce allodynia and GluA2 endocytosis in rats, thus promoting migraine-like pain sensitization. In our previous study, the dopamine D2 receptor was identified as a potential target in the treatment of chronic migraine, and here we found that dopamine D2 receptor activation suppressed chronic-migraine-related pain sensitization through blocking the GluA2/ROS positive feedback loop in vivo and in vitro. Additionally, ligustrazine, a core component of ligusticum chuanxiong, was shown to target the dopamine D2 receptor, thereby alleviating ROS production and abnormal nociception in CM rats. This study provides valuable insight into the treatment of chronic migraine.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China; (X.Z.); (J.Z.)
| | - Ming Lei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China; (X.Z.); (J.Z.)
| | - Lichun Ji
- Department of Respiration, The Thirteenth People’s Hospital of Chongqing, Chongqing 400016, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| |
Collapse
|
2
|
Zhang X, Zhang W, Wang Y, Zhang Y, Zhang D, Qin G, Zhou J, Chen L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front Mol Neurosci 2024; 17:1387481. [PMID: 38840778 PMCID: PMC11150646 DOI: 10.3389/fnmol.2024.1387481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Doser RL, Knight KM, Deihl EW, Hoerndli FJ. Activity-dependent mitochondrial ROS signaling regulates recruitment of glutamate receptors to synapses. eLife 2024; 13:e92376. [PMID: 38483244 PMCID: PMC10990490 DOI: 10.7554/elife.92376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial reactive oxygen species (mitoROS) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitoROS signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ uniporter (MCU-1) that results in an upregulation of mitoROS production. We also observed that mitochondria are positioned in close proximity to synaptic clusters of GLR-1, the C. elegans ortholog of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that synaptic recruitment of GLR-1 is upregulated when MCU-1 function is pharmacologically or genetically impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mitochondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing excitotoxicity and energy depletion.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
- Department of Health and Exercise Sciences, Colorado State UniversityFort CollinsUnited States
| | - Kaz M Knight
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
- Cellular and Molecular Biology Graduate Program, Colorado State UniversityFort CollinsUnited States
| | - Ennis W Deihl
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
4
|
Stetak AL, Grenal T, Lenninger Z, Knight KM, Doser RL, Hoerndli FJ. A Necessary Role for PKC-2 and TPA-1 in Olfactory Memory and Synaptic AMPAR Trafficking in Caenorhabditis elegans. J Neurosci 2024; 44:e1120232024. [PMID: 38238075 PMCID: PMC10919255 DOI: 10.1523/jneurosci.1120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Protein kinase C (PKC) functions are essential for synaptic plasticity, learning, and memory. However, the roles of specific members of the PKC family in synaptic function, learning, and memory are poorly understood. Here, we investigated the role of individual PKC homologs for synaptic plasticity in Caenorhabditis elegans and found a differential role for pkc-2 and tpa-1, but not pkc-1 and pkc-3 in associative olfactory learning and memory. More specifically we show that PKC-2 is essential for associative learning and TPA-1 for short-term associative memory (STAM). Using endogenous labeling and cell-specific rescues, we show that TPA-1 and PKC-2 are required in AVA for their functions. Previous studies demonstrated that olfactory learning and memory in C. elegans are tied to proper synaptic content and trafficking of AMPA-type ionotropic glutamate receptor homolog GLR-1 in the AVA command interneurons. Therefore, we quantified synaptic content, transport, and delivery of GLR-1 in AVA and showed that loss of pkc-2 and tpa-1 leads to decreased transport and delivery but only a subtle decrease in GLR-1 levels at synapses. AVA-specific expression of both PKC-2 and TPA-1 rescued these defects. Finally, genetic epistasis showed that PKC-2 and TPA-1 likely act in the same pathway to control GLR-1 transport and delivery, while regulating different aspects of olfactory learning and STAM. Thus, our data tie together cell-specific functions of 2 PKCs to neuronal and behavioral outcomes in C. elegans, enabling comparative approaches to understand the evolutionarily conserved role of PKC in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Attila L Stetak
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
- University Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland
| | - Thomas Grenal
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Zephyr Lenninger
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Kaz M Knight
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Rachel L Doser
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
- Health and Exercise Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
5
|
Yang C, Wei M, Zhao Y, Yang Z, Song M, Mi J, Yang X, Tian G. Regulation of insulin secretion by the post-translational modifications. Front Cell Dev Biol 2023; 11:1217189. [PMID: 37601108 PMCID: PMC10436566 DOI: 10.3389/fcell.2023.1217189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post-translational modification (PTM) has a significant impact on cellular signaling and function regulation. In pancreatic β cells, PTMs are involved in insulin secretion, cell development, and viability. The dysregulation of PTM in β cells is clinically associated with the development of diabetes mellitus. Here, we summarized current findings on major PTMs occurring in β cells and their roles in insulin secretion. Our work provides comprehensive insight into understanding the mechanisms of insulin secretion and potential therapeutic targets for diabetes from the perspective of protein PTMs.
Collapse
Affiliation(s)
- Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Yanpu Zhao
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Zhanyi Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengyao Song
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoyong Yang
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
6
|
Puzio M, Moreton N, Sullivan M, Scaife C, Glennon JC, O'Connor JJ. An Electrophysiological and Proteomic Analysis of the Effects of the Superoxide Dismutase Mimetic, MnTMPyP, on Synaptic Signalling Post-Ischemia in Isolated Rat Hippocampal Slices. Antioxidants (Basel) 2023; 12:antiox12040792. [PMID: 37107167 PMCID: PMC10135248 DOI: 10.3390/antiox12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic stress and the increased production of reactive oxygen species (ROS) are two main contributors to neuronal damage and synaptic plasticity in acute ischemic stroke. The superoxide scavenger MnTMPyP has been previously reported to have a neuroprotective effect in organotypic hippocampal slices and to modulate synaptic transmission after in vitro hypoxia and oxygen-glucose deprivation (OGD). However, the mechanisms involved in the effect of this scavenger remain elusive. In this study, two concentrations of MnTMPyP were evaluated on synaptic transmission during ischemia and post-ischemic synaptic potentiation. The complex molecular changes supporting cellular adaptation to metabolic stress, and how these are modulated by MnTMPyP, were also investigated. Electrophysiological data showed that MnTMPyP causes a decrease in baseline synaptic transmission and impairment of synaptic potentiation. Proteomic analysis performed on MnTMPyP and hypoxia-treated tissue indicated an impairment in vesicular trafficking mechanisms, including reduced expression of Hsp90 and actin signalling. Alterations of vesicular trafficking may lead to reduced probability of neurotransmitter release and AMPA receptor activity, resulting in the observed modulatory effect of MnTMPyP. In OGD, protein enrichment analysis highlighted impairments in cell proliferation and differentiation, such as TGFβ1 and CDKN1B signalling, in addition to downregulation of mitochondrial dysfunction and an increased expression of CAMKII. Taken together, our results may indicate modulation of neuronal sensitivity to the ischemic insult, and a complex role for MnTMPyP in synaptic transmission and plasticity, potentially providing molecular insights into the mechanisms mediating the effects of MnTMPyP during ischemia.
Collapse
Affiliation(s)
- Martina Puzio
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mairéad Sullivan
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Caitriona Scaife
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeffrey C Glennon
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
7
|
Doser R, Knight KM, Deihl E, Hoerndli F. Subcellular Imaging of Neuronal Calcium Handling In Vivo. J Vis Exp 2023:10.3791/64928. [PMID: 37010315 PMCID: PMC10937071 DOI: 10.3791/64928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Calcium (Ca2+) imaging has been largely used to examine neuronal activity, but it is becoming increasingly clear that subcellular Ca2+ handling is a crucial component of intracellular signaling. The visualization of subcellular Ca2+ dynamics in vivo, where neurons can be studied in their native, intact circuitry, has proven technically challenging in complex nervous systems. The transparency and relatively simple nervous system of the nematode Caenorhabditis elegans enable the cell-specific expression and in vivo visualization of fluorescent tags and indicators. Among these are fluorescent indicators that have been modified for use in the cytoplasm as well as various subcellular compartments, such as the mitochondria. This protocol enables non-ratiometric Ca2+ imaging in vivo with a subcellular resolution that permits the analysis of Ca2+ dynamics down to the level of individual dendritic spines and mitochondria. Here, two available genetically encoded indicators with different Ca2+ affinities are used to demonstrate the use of this protocol for measuring relative Ca2+ levels within the cytoplasm or mitochondrial matrix in a single pair of excitatory interneurons (AVA). Together with the genetic manipulations and longitudinal observations possible in C. elegans, this imaging protocol may be useful for answering questions regarding how Ca2+ handling regulates neuronal function and plasticity.
Collapse
Affiliation(s)
- Rachel Doser
- Department of Biomedical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences
| | - Kaz M Knight
- Department of Biomedical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences; Cellular and Molecular Biology Graduate Program, Colorado State University College of Veterinary Medicine and Biomedical Sciences
| | - Ennis Deihl
- Department of Biomedical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences
| | - Frederic Hoerndli
- Department of Biomedical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences;
| |
Collapse
|
8
|
Moreton N, Puzio M, O’Connor JJ. The effects of the superoxide dismutase mimetic, MnTMPyP, post hypoxia and oxygen glucose deprivation, in isolated rat hippocampal slices. Brain Res Bull 2022; 190:105-115. [DOI: 10.1016/j.brainresbull.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
|
9
|
Yadav D, Kumar P. Restoration and targeting of aberrant neurotransmitters in Parkinson's disease therapeutics. Neurochem Int 2022; 156:105327. [PMID: 35331828 DOI: 10.1016/j.neuint.2022.105327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Neurotransmitters are considered as a fundamental regulator in the process of neuronal growth, differentiation and survival. Parkinson's Disease (PD) occurs due to extensive damage of dopamine-producing neurons; this causes dopamine deficits in the midbrain, followed by the alternation of various other neurotransmitters (glutamate, GABA, serotonin, etc.). It has been observed that fluctuation of neurotransmission in the basal ganglia exhibits a great impact on the pathophysiology of PD. Dopamine replacement therapy, such as the use of L-DOPA, can increase the dopamine level, but it majorly ameliorates the motor symptoms and is also associated with long-term complications (for e.g., LID). While the non-dopaminergic system can efficiently target non-motor symptoms, for instance, the noradrenergic system regulates the synthesis of BDNF via the MAPK pathway, which is important in learning and memory. Herein, we briefly discuss the role of different neurotransmitters, implementation of neurotransmitter receptors in PD. We also illustrate the recent advances of neurotransmitter-based drugs, which are currently under in vivo and clinical studies. Reinstating normal neurotransmitter levels has been believed to be advantageous in the treatment of PD. Thus, there is an increasing demand for drugs that can specifically target the neurotransmission system and reinstate the normal levels of neurotransmitters, which might prevent or delay neurodegeneration in PD.
Collapse
Affiliation(s)
- Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India.
| |
Collapse
|
10
|
Doser RL, Hoerndli FJ. Decreased Reactive Oxygen Species Signaling Alters Glutamate Receptor Transport to Synapses in C. elegans AVA Neurons. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000528. [PMID: 35622512 PMCID: PMC9007496 DOI: 10.17912/micropub.biology.000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are chemically reactive molecules normally produced during cellular respiration. High ROS levels negatively impact forms of synaptic plasticity that rely on changes in the number of ionotropic glutamate receptors (iGluRs) at synapses. More recently, we have shown that physiological increases in ROS reduce iGluR transport to synapses by acting on activity-dependent calcium signaling. Here, we show that decreasing mitochondria-derived ROS decrease iGluR transport albeit in a calcium-independent manner. These data demonstrate differential regulatory mechanisms by elevated or diminished ROS levels which further support a physiological signaling role for ROS in regulating iGluR transport to synapses.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
,
Correspondence to: Frederic J Hoerndli (
)
| |
Collapse
|
11
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Biswas K, Alexander K, Francis MM. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NEUROSCI 2022; 3:130-145. [PMID: 39484669 PMCID: PMC11523706 DOI: 10.3390/neurosci3010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2024] Open
Abstract
Reactive oxygen species (ROS) have emerged as regulators of key processes supporting neuronal growth, function, and plasticity across lifespan. At normal physiological levels, ROS perform important roles as secondary messengers in diverse molecular processes such as regulating neuronal differentiation, polarization, synapse maturation, and neurotransmission. In contrast, high levels of ROS are toxic and can ultimately lead to cell death. Excitable cells, such as neurons, often require high levels of metabolic activity to perform their functions. As a consequence, these cells are more likely to produce high levels of ROS, potentially enhancing their susceptibility to oxidative damage. In addition, because neurons are generally post-mitotic, they may be subject to accumulating oxidative damage. Thus, maintaining tight control over ROS concentration in the nervous system is essential for proper neuronal development and function. We are developing a more complete understanding of the cellular and molecular mechanisms for control of ROS in these processes. This review focuses on ROS regulation of the developmental and functional properties of neurons, highlighting recent in vivo studies. We also discuss the current evidence linking oxidative damage to pathological conditions associated with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|