William CM, Stern MA, Pei X, Saqran L, Ramani M, Frosch MP, Hyman BT. Impairment of visual cortical plasticity by amyloid-beta species.
Neurobiol Dis 2021;
154:105344. [PMID:
33766652 PMCID:
PMC8113107 DOI:
10.1016/j.nbd.2021.105344]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION
A variety of transgenic and knock-in mice that express mutant alleles of Amyloid precursor protein (APP) have been used to model the effects of amyloid-beta (Aβ) on circuit function in Alzheimer's disease (AD); however phenotypes described in these mice may be affected by expression of mutant APP or proteolytic cleavage products independent of Aβ. In addition, the effects of mutant APP expression are attributed to elevated expression of the amyloidogenic, 42-amino acid-long species of Aβ (Aβ42) associated with amyloid plaque accumulation in AD, though elevated concentrations of Aβ40, an Aβ species produced with normal synaptic activity, may also affect neural function.
METHODS
To explore the effects of elevated expression of Aβ on synaptic function in vivo, we assessed visual system plasticity in transgenic mice that express and secrete Aβ throughout the brain in the absence of APP overexpression. Transgenic mice that express either Aβ40 or Aβ42 were assayed for their ability to appropriately demonstrate ocular dominance plasticity following monocular deprivation.
RESULTS
Using two complementary approaches to measure the plastic response to monocular deprivation, we find that male and female mice that express either 40- or 42-amino acid-long Aβ species demonstrate a plasticity defect comparable to that elicited in transgenic mice that express mutant alleles of APP and Presenilin 1 (APP/PS1 mice).
CONCLUSIONS
These data support the hypothesis that mutant APP-driven plasticity impairment in mouse models of AD is mediated by production and accumulation of Aβ. Moreover, these findings suggest that soluble species of Aβ are capable of modulating synaptic plasticity, likely independent of any aggregation. These findings may have implications for the role of soluble species of Aβ in both development and disease settings.
Collapse