1
|
Salsano I, Tain R, Giulietti G, Williams DP, Ottaviani C, Antonucci G, Thayer JF, Santangelo V. Negative emotions enhance memory-guided attention in a visual search task by increasing frontoparietal, insular, and parahippocampal cortical activity. Cortex 2024; 173:16-33. [PMID: 38354670 DOI: 10.1016/j.cortex.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Previous literature demonstrated that long-term memory representations guide spatial attention during visual search in real-world pictures. However, it is currently unknown whether memory-guided visual search is affected by the emotional content of the picture. During functional magnetic resonance imaging (fMRI), participants were asked to encode the position of high-contrast targets embedded in emotional (negative or positive) or neutral pictures. At retrieval, they performed a visual search for targets presented at the same location as during encoding, but at a much lower contrast. Behaviorally, participants detected more accurately targets presented in negative pictures compared to those in positive or neutral pictures. They were also faster in detecting targets presented at encoding in emotional (negative or positive) pictures than in neutral pictures, or targets not presented during encoding (i.e., memory-guided attention effect). At the neural level, we found increased activation in a large circuit of regions involving the dorsal and ventral frontoparietal cortex, insular and parahippocampal cortex, selectively during the detection of targets presented in negative pictures during encoding. We propose that these regions might form an integrated neural circuit recruited to select and process previously encoded target locations (i.e., memory-guided attention sustained by the frontoparietal cortex) embedded in emotional contexts (i.e., emotional contexts recollection supported by the parahippocampal cortex and emotional monitoring supported by the insular cortex). Ultimately, these findings reveal that negative emotions can enhance memory-guided visual search performance by increasing neural activity in a large-scale brain circuit, contributing to disentangle the complex relationship between emotion, attention, and memory.
Collapse
Affiliation(s)
- Ilenia Salsano
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - Rongwen Tain
- Campus Center of Neuroimaging, University of California, Irvine, CA, USA
| | - Giovanni Giulietti
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; SAIMLAL Department, Sapienza University of Rome, Rome, Italy
| | - DeWayne P Williams
- Department of Psychological Science, University of California, Irvine, Irvine, USA
| | | | - Gabriella Antonucci
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, USA
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.
| |
Collapse
|
2
|
Leibovitz SE, Sevinc G, Greenberg J, Hölzel B, Gard T, Calahan T, Vangel M, Orr SP, Milad MR, Lazar SW. Mindfulness training and exercise differentially impact fear extinction neurocircuitry. Psychol Med 2024; 54:835-846. [PMID: 37655520 DOI: 10.1017/s0033291723002593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND The ability to extinguish a maladaptive conditioned fear response is crucial for healthy emotional processing and resiliency to aversive experiences. Therefore, enhancing fear extinction learning has immense potential emotional and health benefits. Mindfulness training enhances both fear conditioning and recall of extinguished fear; however, its effects on fear extinction learning are unknown. Here we investigated the impact of mindfulness training on brain mechanisms associated with fear-extinction learning, compared to an exercise-based program. METHODS We investigated BOLD activations in response to a previously learned fear-inducing cue during an extinction paradigm, before and after an 8-week mindfulness-based stress reduction program (MBSR, n = 49) or exercise-based stress management education program (n = 27). RESULTS The groups exhibited similar reductions in stress, but the MBSR group was uniquely associated with enhanced activation of salience network nodes and increased hippocampal engagement. CONCLUSIONS Our results suggest that mindfulness training increases attention to anticipatory aversive stimuli, which in turn facilitates decreased aversive subjective responses and enhanced reappraisal of the memory.
Collapse
Affiliation(s)
- Shaked E Leibovitz
- College of Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Gunes Sevinc
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Britta Hölzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Tim Gard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas Calahan
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark Vangel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott P Orr
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mohammed R Milad
- Psychiatry Department, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Favila SE, Aly M. Hippocampal mechanisms resolve competition in memory and perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561548. [PMID: 37873400 PMCID: PMC10592663 DOI: 10.1101/2023.10.09.561548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Behaving adaptively requires selection of relevant memories and sensations and suppression of competing ones. We hypothesized that these mechanisms are linked, such that hippocampal computations that resolve competition in memory also shape the precision of sensory representations to guide selective attention. We leveraged f MRI-based pattern similarity, receptive field modeling, and eye tracking to test this hypothesis in humans performing a memory-dependent visual search task. In the hippocampus, differentiation of competing memories predicted the precision of memory-guided eye movements. In visual cortex, preparatory coding of remembered target locations predicted search successes, whereas preparatory coding of competing locations predicted search failures due to interference. These effects were linked: stronger hippocampal memory differentiation was associated with lower competitor activation in visual cortex, yielding more precise preparatory representations. These results demonstrate a role for memory differentiation in shaping the precision of sensory representations, highlighting links between mechanisms that overcome competition in memory and perception.
Collapse
Affiliation(s)
- Serra E Favila
- Department of Psychology, Columbia University, New York, NY, 10027
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, NY, 10027
| |
Collapse
|
4
|
Boeken OJ, Markett S. Systems-level decoding reveals the cognitive and behavioral profile of the human intraparietal sulcus. FRONTIERS IN NEUROIMAGING 2023; 1:1074674. [PMID: 37555176 PMCID: PMC10406318 DOI: 10.3389/fnimg.2022.1074674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 08/10/2023]
Abstract
INTRODUCTION The human intraparietal sulcus (IPS) covers large portions of the posterior cortical surface and has been implicated in a variety of cognitive functions. It is, however, unclear how cognitive functions dissociate between the IPS's heterogeneous subdivisions, particularly in perspective to their connectivity profile. METHODS We applied a neuroinformatics driven system-level decoding on three cytoarchitectural distinct subdivisions (hIP1, hIP2, hIP3) per hemisphere, with the aim to disentangle the cognitive profile of the IPS in conjunction with functionally connected cortical regions. RESULTS The system-level decoding revealed nine functional systems based on meta-analytical associations of IPS subdivisions and their cortical coactivations: Two systems-working memory and numeric cognition-which are centered on all IPS subdivisions, and seven systems-attention, language, grasping, recognition memory, rotation, detection of motions/shapes and navigation-with varying degrees of dissociation across subdivisions and hemispheres. By probing the spatial overlap between systems-level co-activations of the IPS and seven canonical intrinsic resting state networks, we observed a trend toward more co-activation between hIP1 and the front parietal network, between hIP2 and hIP3 and the dorsal attention network, and between hIP3 and the visual and somatomotor network. DISCUSSION Our results confirm previous findings on the IPS's role in cognition but also point to previously unknown differentiation along the IPS, which present viable starting points for future work. We also present the systems-level decoding as promising approach toward functional decoding of the human connectome.
Collapse
Affiliation(s)
- Ole Jonas Boeken
- Department of Molecular Psychology, Institute for Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
5
|
Salsano I, Santangelo V, Macaluso E. The lateral intraparietal sulcus takes viewpoint changes into account during memory-guided attention in natural scenes. Brain Struct Funct 2021; 226:989-1006. [PMID: 33533985 PMCID: PMC8036207 DOI: 10.1007/s00429-021-02221-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Abstract
Previous studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.
Collapse
Affiliation(s)
- Ilenia Salsano
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - Valerio Santangelo
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Emiliano Macaluso
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France
| |
Collapse
|
6
|
Sutterer DW, Polyn SM, Woodman GF. α-Band activity tracks a two-dimensional spotlight of attention during spatial working memory maintenance. J Neurophysiol 2021; 125:957-971. [PMID: 33534657 DOI: 10.1152/jn.00582.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Covert spatial attention is thought to facilitate the maintenance of locations in working memory, and EEG α-band activity (8-12 Hz) is proposed to track the focus of covert attention. Recent work has shown that multivariate patterns of α-band activity track the polar angle of remembered locations relative to fixation. However, a defining feature of covert spatial attention is that it facilitates processing in a specific region of the visual field, and prior work has not determined whether patterns of α-band activity track the two-dimensional (2-D) coordinates of remembered stimuli within a visual hemifield or are instead maximally sensitive to the polar angle of remembered locations around fixation. Here, we used a lateralized spatial estimation task, in which observers remembered the location of one or two target dots presented to one side of fixation, to test this question. By applying a linear discriminant classifier to the topography of α-band activity, we found that we were able to decode the location of remembered stimuli. Critically, model comparison revealed that the pattern of classifier choices observed across remembered positions was best explained by a model assuming that α-band activity tracks the 2-D coordinates of remembered locations rather than a model assuming that α-band activity tracks the polar angle of remembered locations relative to fixation. These results support the hypothesis that this α-band activity is involved in the spotlight of attention, and arises from mid- to lower-level visual areas involved in maintaining spatial locations in working memory.NEW & NOTEWORTHY A substantial body of work has shown that patterns of EEG α-band activity track the angular coordinates of attended and remembered stimuli around fixation, but whether these patterns track the two-dimensional coordinates of stimuli presented within a visual hemifield remains an open question. Here, we demonstrate that α-band activity tracks the two-dimensional coordinates of remembered stimuli within a hemifield, showing that α-band activity reflects a spotlight of attention focused on locations maintained in working memory.
Collapse
Affiliation(s)
- David W Sutterer
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Sean M Polyn
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Geoffrey F Woodman
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
7
|
Heidekum AE, Vogel SE, Grabner RH. Associations Between Individual Differences in Mathematical Competencies and Surface Anatomy of the Adult Brain. Front Hum Neurosci 2020; 14:116. [PMID: 32292335 PMCID: PMC7118203 DOI: 10.3389/fnhum.2020.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/13/2020] [Indexed: 01/18/2023] Open
Abstract
Previously conducted structural magnetic resonance imaging (MRI) studies on the neuroanatomical correlates of mathematical abilities and competencies have several methodological limitations. Besides small sample sizes, the majority of these studies have employed voxel-based morphometry (VBM)-a method that, although it is easy to implement, has some major drawbacks. Taking this into account, the current study is the first to investigate in a large sample of typically developed adults the associations between mathematical abilities and variations in brain surface structure by using surface-based morphometry (SBM). SBM is a method that also allows the investigation of brain morphometry by avoiding the pitfalls of VBM. Eighty-nine young adults were tested with a large battery of psychometric tests to measure mathematical competencies in four different areas: (1) simple arithmetic; (2) complex arithmetic; (3) higher-order mathematics; and (4) numerical intelligence. Also, we asked participants for their mathematics grades for their final school exams. Inside the MRI scanner, we collected high-resolution T1-weighted anatomical images from each subject. SBM analyses were performed with the computational anatomy toolbox (CAT12) and indices for cortical thickness, for cortical surface complexity, for gyrification, and sulcal depth were calculated. Further analyses revealed associations between: (1) the cortical surface complexity of the right superior temporal gyrus and numerical intelligence; (2) the depth of the right central sulcus and adults' ability to solve complex arithmetic problems; and (3) the depth of the left parieto-occipital sulcus and adults' higher-order mathematics competence. Interestingly, no relationships with previously reported brain regions were observed, thus, suggesting the importance of similar research to confirm the role of the brain regions found in this study.
Collapse
Affiliation(s)
- Alexander E. Heidekum
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
8
|
Rosen ML, Stern CE, Devaney KJ, Somers DC. Cortical and Subcortical Contributions to Long-Term Memory-Guided Visuospatial Attention. Cereb Cortex 2019; 28:2935-2947. [PMID: 28968648 DOI: 10.1093/cercor/bhx172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2017] [Indexed: 01/22/2023] Open
Abstract
Long-term memory (LTM) helps to efficiently direct and deploy the scarce resources of the attentional system; however, the neural substrates that support LTM-guidance of visual attention are not well understood. Here, we present results from fMRI experiments that demonstrate that cortical and subcortical regions of a network defined by resting-state functional connectivity are selectively recruited for LTM-guided attention, relative to a similarly demanding stimulus-guided attention paradigm that lacks memory retrieval and relative to a memory retrieval paradigm that lacks covert deployment of attention. Memory-guided visuospatial attention recruited posterior callosal sulcus, posterior precuneus, and lateral intraparietal sulcus bilaterally. Additionally, 3 subcortical regions defined by intrinsic functional connectivity were recruited: the caudate head, mediodorsal thalamus, and cerebellar lobule VI/Crus I. Although the broad resting-state network to which these nodes belong has been referred to as a cognitive control network, the posterior cortical regions activated in the present study are not typically identified with supporting standard cognitive control tasks. We propose that these regions form a Memory-Attention Network that is recruited for processes that integrate mnemonic and stimulus-based representations to guide attention. These findings may have important implications for understanding the mechanisms by which memory retrieval influences attentional deployment.
Collapse
Affiliation(s)
- Maya L Rosen
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Room 149C, Boston, MA, USA.,Department of Psychology, University of Washington, 119A Guthrie Hall, Seattle, WA, USA
| | - Chantal E Stern
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Room 149C, Boston, MA, USA.,Center for Memory and Brain, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA, USA
| | - Kathryn J Devaney
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Room 149C, Boston, MA, USA
| | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Room 149C, Boston, MA, USA.,Center for Memory and Brain, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA, USA
| |
Collapse
|
9
|
Sutterer DW, Foster JJ, Serences JT, Vogel EK, Awh E. Alpha-band oscillations track the retrieval of precise spatial representations from long-term memory. J Neurophysiol 2019; 122:539-551. [PMID: 31188708 DOI: 10.1152/jn.00268.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A hallmark of episodic memory is the phenomenon of mentally reexperiencing the details of past events, and a well-established concept is that the neuronal activity that mediates encoding is reinstated at retrieval. Evidence for reinstatement has come from multiple modalities, including functional magnetic resonance imaging and electroencephalography (EEG). These EEG studies have shed light on the time course of reinstatement but have been limited to distinguishing between a few categories. The goal of this work was to use recently developed experimental and technical approaches, namely continuous report tasks and inverted encoding models, to determine which frequencies of oscillatory brain activity support the retrieval of precise spatial memories. In experiment 1, we establish that an inverted encoding model applied to multivariate alpha topography tracks the retrieval of precise spatial memories. In experiment 2, we demonstrate that the frequencies and patterns of multivariate activity at study are similar to the frequencies and patterns observed during retrieval. These findings highlight the broad potential for using encoding models to characterize long-term memory retrieval.NEW & NOTEWORTHY Previous EEG work has shown that category-level information observed during encoding is recapitulated during memory retrieval, but studies with this time-resolved method have not demonstrated the reinstatement of feature-specific patterns of neural activity during retrieval. Here we show that EEG alpha-band activity tracks the retrieval of spatial representations from long-term memory. Moreover, we find considerable overlap between the frequencies and patterns of activity that track spatial memories during initial study and at retrieval.
Collapse
Affiliation(s)
- David W Sutterer
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Joshua J Foster
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - John T Serences
- Department of Psychology, University of California San Diego, La Jolla, California.,Neuroscience Graduate Program, University of California San Diego, La Jolla, California
| | - Edward K Vogel
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| | - Edward Awh
- Department of Psychology, University of Chicago, Chicago, Illinois.,Institute for Mind and Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Richter M, Amunts K, Mohlberg H, Bludau S, Eickhoff SB, Zilles K, Caspers S. Cytoarchitectonic segregation of human posterior intraparietal and adjacent parieto-occipital sulcus and its relation to visuomotor and cognitive functions. Cereb Cortex 2019; 29:1305-1327. [PMID: 30561508 PMCID: PMC6373694 DOI: 10.1093/cercor/bhy245] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Human posterior intraparietal sulcus (pIPS) and adjacent posterior wall of parieto-occipital sulcus (POS) are functionally diverse, serving higher motor, visual and cognitive functions. Its microstructural basis, though, is still largely unknown. A similar or even more pronounced architectonical complexity, as described in monkeys, could be assumed. We cytoarchitectonically mapped the pIPS/POS in 10 human postmortem brains using an observer-independent, quantitative parcellation. 3D-probability maps were generated within MNI reference space and used for functional decoding and meta-analytic coactivation modeling based on the BrainMap database to decode the general structural-functional organization of the areas. Seven cytoarchitectonically distinct areas were identified: five within human pIPS, three on its lateral (hIP4-6) and two on its medial wall (hIP7-8); and two (hPO1, hOc6) in POS. Mediocaudal areas (hIP7, hPO1) were predominantly involved in visual processing, whereas laterorostral areas (hIP4-6, 8) were associated with higher cognitive functions, e.g. counting. This shift was mirrored by systematic changes in connectivity, from temporo-occipital to premotor and prefrontal cortex, and in cytoarchitecture, from prominent Layer IIIc pyramidal cells to homogeneous neuronal distribution. This architectonical mosaic within human pIPS/POS represents a structural basis of its functional and connectional heterogeneity. The new 3D-maps of the areas enable dedicated assessments of structure-function relationships.
Collapse
Affiliation(s)
- Monika Richter
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| |
Collapse
|
11
|
Nussenbaum K, Scerif G, Nobre AC. Differential Effects of Salient Visual Events on Memory-Guided Attention in Adults and Children. Child Dev 2018; 90:1369-1388. [PMID: 30295321 PMCID: PMC6767380 DOI: 10.1111/cdev.13149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both salient visual events and scene‐based memories can influence attention, but it is unclear how they interact in children and adults. In Experiment 1, children (N = 27; ages 7–12) were faster to discriminate targets when they appeared at the same versus different location as they had previously learned or as a salient visual event. In contrast, adults (N = 30; ages 18–31) responded faster only when cued by visual events. While Experiment 2 confirmed that adults (N = 27) can use memories to orient attention, Experiment 3 showed that, even in the absence of visual events, the effects of memories on attention were larger in children (N = 27) versus adults (N = 28). These findings suggest that memories may be a robust source of influence on children's attention.
Collapse
|
12
|
Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection. J Neurosci 2018; 38:1511-1519. [PMID: 29311140 DOI: 10.1523/jneurosci.1716-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information.SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks.
Collapse
|
13
|
Abstract
Previous studies on directed forgetting in visual working memory (VWM) have shown that, if people are cued to remember only a subset of the items currently held in VWM, they will completely forget the uncued, no longer relevant items. While this finding is indicative of selective remembering, it remains unclear whether directed forgetting can also occur in the absence of any concurrent to-be-remembered information. In the current study, we addressed this matter by asking participants to memorize a single object that could be followed by a cue to forget or remember this object. Following the cue, we assessed the object’s activation in VWM by determining whether a matching distractor would capture attention in a visual search task. The results showed that, compared to a cue to remember, a cue to forget led to a reduced likelihood of attentional capture by a matching distractor. In addition, we found that capture effects by to-be-remembered and to-be-forgotten distractors remained stable as the interval between the onset of the cue and the search task increased from 700 ms to 3900 ms. We conclude that, in the absence of any to-be-remembered objects, an instruction to forget an object held in WM leads to a rapid but incomplete deactivation of the representation of that object, thus allowing it to continue to produce a weak biasing effect on attentional selection for several seconds after the instruction to forget.
Collapse
|