1
|
Mandler M, Rockenstein E, Overk C, Mante M, Florio J, Adame A, Kim C, Santic R, Schneeberger A, Mattner F, Schmidhuber S, Galabova G, Spencer B, Masliah E, Rissman RA. Effects of single and combined immunotherapy approach targeting amyloid β protein and α-synuclein in a dementia with Lewy bodies-like model. Alzheimers Dement 2019; 15:1133-1148. [PMID: 31378574 DOI: 10.1016/j.jalz.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Immunotherapeutic approaches targeting amyloid β (Aβ) protein and tau in Alzheimer's disease and α-synuclein (α-syn) in Parkinson's disease are being developed for treating dementia with Lewy bodies. However, it is unknown if single or combined immunotherapies targeting Aβ and/or α-syn may be effective. METHODS Amyloid precursor protein/α-syn tg mice were immunized with AFFITOPEs® (AFF) peptides specific to Aβ (AD02) or α-syn (PD-AFF1) and the combination. RESULTS AD02 more effectively reduced Aβ and pTau burden; however, the combination exhibited some additive effects. Both AD02 and PD-AFF1 effectively reduced α-syn, ameliorated degeneration of pyramidal neurons, and reduced neuroinflammation. PD-AFF1 more effectively ameliorated cholinergic and dopaminergic fiber loss; the combined immunization displayed additive effects. AD02 more effectively improved buried pellet test behavior, whereas PD-AFF1 more effectively improved horizontal beam test; the combined immunization displayed additive effects. DISCUSSION Specific active immunotherapy targeting Aβ and/or α-syn may be of potential interest for the treatment of dementia with Lewy bodies.
Collapse
Affiliation(s)
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Changyoun Kim
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
2
|
Weihl CC, Mammen AL. Sporadic inclusion body myositis - a myodegenerative disease or an inflammatory myopathy. Neuropathol Appl Neurobiol 2018; 43:82-91. [PMID: 28111778 DOI: 10.1111/nan.12384] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/29/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is an insidious late-onset progressive myopathy that typically affects patients over the age of 50. Clinically, patients develop a characteristic pattern of weakness that affects the forearm flexors and knee extensors. Muscle biopsy, often utilized in the diagnosis, demonstrates a chronic myopathy with mixed pathologies harbouring intramyofiber protein inclusions and endomysial inflammation. The co-existence of these pathologic features (that is, inflammation and protein aggregation) has divided the field of sIBM research into two opposing (albeit slowly unifying) camps regarding disease pathogenesis. The present review explores the recent evidence supporting these distinct pathogenic mechanisms. Future therapies that are designed to target both aspects of sIBM pathologies will likely be necessary to treat sIBM.
Collapse
Affiliation(s)
- C C Weihl
- Department of Neurology and Hope Center for Neurological Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - A L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Expression, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Modarres HP, Janmaleki M, Novin M, Saliba J, El-Hajj F, RezayatiCharan M, Seyfoori A, Sadabadi H, Vandal M, Nguyen MD, Hasan A, Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 2018; 273:108-130. [PMID: 29378233 DOI: 10.1016/j.jconrel.2018.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mana Novin
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - John Saliba
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mahdi RezayatiCharan
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Seyfoori
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Anwarul Hasan
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
4
|
Needham M, Mastaglia F. Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1318056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
|
6
|
Luo YB, Johnsen RD, Griffiths L, Needham M, Fabian VA, Fletcher S, Wilton SD, Mastaglia FL. Primary over-expression of AβPP in muscle does not lead to the development of inclusion body myositis in a new lineage of the MCK-AβPP transgenic mouse. Int J Exp Pathol 2013; 94:418-25. [PMID: 24205796 PMCID: PMC3944453 DOI: 10.1111/iep.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/10/2013] [Indexed: 11/27/2022] Open
Abstract
The aim of this study is to determine whether primary over-expression of AβPP in skeletal muscle results in the development of features of inclusion body myositis (IBM) in a new lineage of the MCK-AβPP transgenic mouse. Quantitative histological, immunohistochemical and western blotting studies were performed on muscles from 3 to 18 month old transgenic and wild-type C57BL6/SJL mice. Electron microscopy was also performed on muscle sections from selected animals. Although western blotting confirmed that there was over-expression of full length AβPP in transgenic mouse muscles, deposition of amyloid-β and fibrillar amyloid could not be demonstrated histochemically or with electron microscopy. Additionally, other changes typical of IBM such as rimmed vacuoles, cytochrome C oxidase-deficient fibres, upregulation of MHC antigens, lymphocytic inflammatory infiltration and T cell fibre invasion were absent. The most prominent finding in both transgenic and wild-type animals was the presence of tubular aggregates which was age-related and largely restricted to male animals. Expression of full length AβPP in this MCK-AβPP mouse lineage did not reach the levels required for immunodetection or deposition of amyloid-β as in the original transgenic strains, and was not associated with the development of pathological features of IBM. These negative results emphasise the potential pitfalls of re-deriving transgenic mouse strains in different laboratories.
Collapse
MESH Headings
- Amyloid/metabolism
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Creatine Kinase, MM Form/genetics
- Creatine Kinase, MM Form/metabolism
- Disease Models, Animal
- Female
- Genotype
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Myositis, Inclusion Body/genetics
- Myositis, Inclusion Body/metabolism
- Transgenes/genetics
- Up-Regulation
- Vacuoles/ultrastructure
Collapse
Affiliation(s)
- Yue-Bei Luo
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-muscular Research Institute, University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
NAKANO N, SATSUMAE T, MIZUTANI T, KIMURA M, TOKUWAKA J, TANAKA M. Anesthetic Management for a Patient with Inclusion Body Myositis. ACTA ACUST UNITED AC 2012. [DOI: 10.2199/jjsca.32.809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Fisher M, Vasilevko V, Passos GF, Ventura C, Quiring D, Cribbs DH. Therapeutic modulation of cerebral microhemorrhage in a mouse model of cerebral amyloid angiopathy. Stroke 2011; 42:3300-3. [PMID: 21903962 PMCID: PMC3221609 DOI: 10.1161/strokeaha.111.626655] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 06/22/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE The aging brain demonstrates frequent MRI and pathological evidence of cerebral microbleeds, which are often associated with cerebral amyloid angiopathy. To develop new therapeutic strategies for this disorder, we studied cerebral microhemorrhage in a well-characterized mouse model of cerebral amyloid angiopathy. METHODS Tg2576 mice were studied at ages ranging from 2 to 21 months. Spontaneous and induced microscopic bleeding was analyzed with and without a passive anti-amyloid immunization regimen and dietary supplementation of ischemic stroke prevention medication dipyridamole. RESULTS Areas of microhemorrhage were easily demonstrated and were significantly more prominent in the oldest mice and in animals treated with anti-amyloid immunotherapy. Dipyridamole supplementation in the diet generated plasma levels >790 ng/mL within the range seen clinically. Dipyridamole treatment did not worsen frequency and size of cerebral microscopic bleeding. CONCLUSIONS The Tg2576 mouse is a useful model to study progression and modification of spontaneous and immunotherapy-induced cerebral microhemorrhage. Absence of microhemorrhage worsening with dipyridamole treatment suggests a potential therapeutic role of this agent when ischemic and microhemorrhagic lesions coexist.
Collapse
Affiliation(s)
- Mark Fisher
- Department of Neurology, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review will highlight recent advances in developing strategies to accelerate muscle regeneration and to slow muscle degeneration in myositis, focusing primarily on inclusion body myositis (IBM). RECENT FINDINGS Therapies for accelerating muscle regeneration, primarily through inhibition of myostatin, have shown promise in the laboratory and are now entering clinical trials. Recent studies have implicated autophagy, a key cellular process involved in clearance of ubiquitinated aggregates, in the pathogenesis of familial and sporadic inclusion body myositis (sIBM). IBM has joined a growing list of diseases known as TDP-43 proteinopathies, in which this protein becomes mislocalized to the cytoplasm; however, it is unclear whether these protein aggregates or others are pathogenic in this disease. SUMMARY New discoveries of biomarkers in sIBM and new insights into the pathogenesis of familial IBM are opening novel therapeutic pathways for these disorders. In particular, drugs that stimulate autophagy, already in development for cancer and neurodegenerative diseases, are candidates for clinical trials. These disease-specific therapies combined with novel therapies to accelerate muscle regeneration hold promise for future therapy for this devastating disease.
Collapse
|
11
|
Nogalska A, D'Agostino C, Engel WK, Klein WL, Askanas V. Novel demonstration of amyloid-β oligomers in sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 2010; 120:661-6. [PMID: 20711838 DOI: 10.1007/s00401-010-0737-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 11/30/2022]
Abstract
Accumulation of amyloid-β (Aβ) within muscle fibers has been considered an upstream step in the development of the s-IBM pathologic phenotype. Aβ42, which is considered more cytotoxic than Aβ40 and has a higher propensity to oligomerize, is preferentially increased in s-IBM muscle fibers. In Alzheimer disease (AD), low-molecular weight Aβ oligomers and toxic oligomers, also referred to as "Aβ-Derived Diffusible Ligands" (ADDLs), are considered strongly cytotoxic and proposed to play an important pathogenic role. ADDLs have been shown to be increased in AD brain. We now report for the first time that in s-IBM muscle biopsies Aβ-dimer, -trimer, and -tetramer are identifiable by immunoblots. While all the s-IBM samples we studied had Aβ-oligomers, their molecular weights and intensity varied between the patient samples. None of the control muscle biopsies had Aβ oligomers. Dot-immunoblots using highly specific anti-ADDL monoclonal antibodies also showed highly increased ADDLs in all s-IBM biopsies studied, while controls were negative. By immunofluorescence, in some of the abnormal s-IBM muscle fibers ADDLs were accumulated in the form of plaque-like inclusions, and were often increased diffusely in very small fibers. Normal and disease-controls were negative. By gold-immuno-electron microscopy, ADDL-immunoreactivities were in close proximity to 6-10 nm amyloid-like fibrils, and also were immunodecorating amorphous and floccular material. In cultured human muscle fibers, we found that inhibition of autophagy led to the accumulation of Aβ oligomers. This novel demonstration of Aβ42 oligomers in s-IBM muscle biopsy provides additional evidence that intra-muscle fiber accumulation of Aβ42 oligomers in s-IBM may contribute importantly to s-IBM pathogenic cascade.
Collapse
Affiliation(s)
- Anna Nogalska
- Department of Neurology, USC Neuromuscular Center, Good Samaritan Hospital, University of Southern California Keck School of Medicine, Los Angeles, CA 90017-1912, USA
| | | | | | | | | |
Collapse
|
12
|
Clos AL, Lasagna-Reeves CA, Wagner R, Kelly B, Jackson GR, Kayed R. Therapeutic removal of amyloid deposits in cutaneous amyloidosis by localised intra-lesional injections of anti-amyloid antibodies. Exp Dermatol 2010; 19:904-11. [DOI: 10.1111/j.1600-0625.2010.01121.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Abstract
Inclusion body myositis is a progressive disease of the skeletal muscle. Here, specific theories of its pathogenesis are reviewed and general considerations pertaining to modeling of this disease discussed. Understanding of inclusion body myositis disease mechanism remains extremely poor. Current published animal models do not represent the disease. Future studies need to consider the critical role of biomarkers and methodologic issues in their discovery.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, and Children's Hospital Informatics Program, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Effects of nonsteroidal anti-inflammatory drugs on amyloid-beta pathology in mouse skeletal muscle. Neurobiol Dis 2010; 39:449-56. [PMID: 20493261 DOI: 10.1016/j.nbd.2010.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a common age-related inflammatory myopathy characterized by the presence of intracellular inclusions that contain the amyloid-beta (Abeta) peptide, a derivative of the amyloid precursor protein (APP). Abeta is believed to cause Alzheimer's disease (AD), suggesting that a link may exist between the two diseases. If AD and sIBM are linked, then treatments that lower Abeta in brain may prove useful for sIBM. To test this hypothesis, transgenic mice that overexpress APP in skeletal muscle were treated for 6 months with a variety of nonsteroidal anti-inflammatory drugs (NSAIDs; naproxen, ibuprofen, carprofen or R-flurbiprofen), a subset of which reduce Abeta in brain and cultured cells. Only ibuprofen lowered Abeta in muscle, and this was not accompanied by corresponding improvements in phenotype. These results indicate that the effects of NSAIDs in the brain may be different from other tissues and that Abeta alone cannot account for skeletal muscle dysfunction in these mice.
Collapse
|
15
|
Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9:237-48. [PMID: 20190788 DOI: 10.1038/nrd3050] [Citation(s) in RCA: 547] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing number of diseases seem to be associated with inappropriate deposition of protein aggregates. Some of these diseases--such as Alzheimer's disease and systemic amyloidoses--have been recognized for a long time. However, it is now clear that ordered aggregation of pathogenic proteins does not only occur in the extracellular space, but in the cytoplasm and nucleus as well, indicating that many other diseases may also qualify as amyloidoses. The common structural and pathogenic features of these diverse protein aggregation diseases is only now being fully understood, and may provide novel opportunities for overarching therapeutic approaches such as depleting the monomeric precursor protein, inhibiting aggregation, enhancing aggregate clearance or blocking common aggregation-induced cellular toxicity pathways.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
16
|
Schmidt J, Dalakas MC. Pathomechanisms of inflammatory myopathies: recent advances and implications for diagnosis and therapies. ACTA ACUST UNITED AC 2010; 4:241-50. [DOI: 10.1517/17530051003713499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Terracciano C, Nogalska A, Engel WK, Askanas V. In AbetaPP-overexpressing cultured human muscle fibers proteasome inhibition enhances phosphorylation of AbetaPP751 and GSK3beta activation: effects mitigated by lithium and apparently relevant to sporadic inclusion-body myositis. J Neurochem 2009; 112:389-96. [PMID: 19878439 DOI: 10.1111/j.1471-4159.2009.06461.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscle fiber degeneration in sporadic inclusion-body myositis (s-IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid-beta (Abeta)-precursor protein 751 (AbetaPP751), Abeta, phosphorylated tau, and other 'Alzheimer-characteristic' proteins. Proteasome inhibition is an important component of the s-IBM pathogenesis. In brains of Alzheimer's disease (AD) patients and AD transgenic-mouse models, phosphorylation of neuronal AbetaPP695 (p-AbetaPP) on Thr668 (equivalent to T724 of AbetaPP751) is considered detrimental because it increases generation of cytotoxic Abeta and induces tau phosphorylation. Activated glycogen synthase kinase3beta (GSK3beta) is involved in phosphorylation of both AbetaPP and tau. Lithium, an inhibitor of GSK3beta, was reported to reduce levels of both the total AbetaPP and p-AbetaPP in AD animal models. In relation to s-IBM, we now show for the first time that (1) In AbetaPP-overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3beta activity and AbetaPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated-AbetaPP, (ii) total amount of AbetaPP, (iii) Abeta oligomers, and (iv) GSK3beta activity; and (c) lithium improves proteasome function. (2) In biopsied s-IBM muscle fibers, GSK3beta is significantly activated and AbetaPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3beta inhibitors, might benefit s-IBM patients.
Collapse
Affiliation(s)
- Chiara Terracciano
- Department of Neurology, USC Neuromuscular Center, University of Southern California Keck, School of Medicine, Good Samaritan Hospital, Los Angeles, California 90017, USA
| | | | | | | |
Collapse
|