1
|
Bruschi M, Biancucci F, Masini S, Piacente F, Ligi D, Bartoccini F, Antonelli A, Mannello F, Bruzzone S, Menotta M, Fraternale A, Magnani M. The influence of redox modulation on hypoxic endothelial cell metabolic and proteomic profiles through a small thiol-based compound tuning glutathione and thioredoxin systems. Biofactors 2023; 49:1205-1222. [PMID: 37409789 DOI: 10.1002/biof.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Reduction in oxygen levels is a key feature in the physiology of the bone marrow (BM) niche where hematopoiesis occurs. The BM niche is a highly vascularized tissue and endothelial cells (ECs) support and regulate blood cell formation from hematopoietic stem cells (HSCs). While in vivo studies are limited, ECs when cultured in vitro at low O2 (<5%), fail to support functional HSC maintenance due to oxidative environment. Therefore, changes in EC redox status induced by antioxidant molecules may lead to alterations in the cellular response to hypoxia likely favoring HSC self-renewal. To evaluate the impact of redox regulation, HUVEC, exposed for 1, 6, and 24 h to 3% O2 were treated with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152). Metabolomic analyses revealed that I-152 increased glutathione levels and influenced the metabolic profiles interconnected with the glutathione system and the redox couples NAD(P)+/NAD(P)H. mRNA analysis showed a lowered gene expression of HIF-1α and VEGF following I-152 treatment whereas TRX1 and 2 were stimulated. Accordingly, the proteomic study revealed the redox-dependent upregulation of thioredoxin and peroxiredoxins that, together with the glutathione system, are the main regulators of intracellular ROS. Indeed, a time-dependent ROS production under hypoxia and a quenching effect of the molecule were evidenced. At the secretome level, the molecule downregulated IL-6, MCP-1, and PDGF-bb. These results suggest that redox modulation by I-152 reduces oxidative stress and ROS level in hypoxic ECs and may be a strategy to fine-tune the environment of an in vitro BM niche able to support functional HSC maintenance.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Sofia Masini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, Genoa, GE, Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, Genoa, GE, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, GE, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| |
Collapse
|
2
|
Li W, Zeng W, Zhang Y, Ma Z, Fang X, Han Y, Sun Y, Jin X, Ma L. A comparative metabolomics analysis of domestic yak ( Bos grunniens) milk with human breast milk. Front Vet Sci 2023; 10:1207950. [PMID: 37841471 PMCID: PMC10570732 DOI: 10.3389/fvets.2023.1207950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Yaks are tough animals living in Tibet's hypoxic stress environment. However, the metabolite composition of yak milk and its role in hypoxic stress tolerance remains largely unexplored. The similarities and differences between yak and human milk in hypoxic stress tolerance are also unclear. This study explored yak colostrum (YC) and yak mature milk (YMM) using GC-MS, and 354 metabolites were identified in yak milk. A comparative metabolomic analysis of yak and human milk metabolites showed that over 70% of metabolites were species-specific. Yak milk relies mainly on essential amino acids- arginine and essential branched-chain amino acids (BCAAs): L-isoleucine, L-leucine, and L-valine tolerate hypoxic stress. To slow hypoxic stress, human breast milk relies primarily on the neuroprotective effects of non-essential amino acids or derivates, such as citrulline, sarcosine, and creatine. In addition, metabolites related to hypoxic stress were significantly enriched in YC than in YMM. These results reveal the unique metabolite composition of yak and human milk and provide practical information for applying yak and human milk to hypoxic stress tolerance.
Collapse
Affiliation(s)
- Wenhao Li
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Weike Zeng
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanping Zhang
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Zhijie Ma
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Xingyan Fang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingcang Han
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Yonggang Sun
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Xiayang Jin
- Institute of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Liuyin Ma
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Heland S, Fields N, Ellery SJ, Fahey M, Palmer KR. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022; 9:992120. [PMID: 36483929 PMCID: PMC9722743 DOI: 10.3389/fnut.2022.992120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 06/21/2024] Open
Abstract
Nutritional deficits or excesses affect a huge proportion of pregnant women worldwide. Maternal nutrition has a significant influence on the fetal environment and can dramatically impact fetal brain development. This paper reviews current nutritional supplements that can be used to optimise fetal neurodevelopment and prevent neurodevelopmental morbidities, including folate, iodine, vitamin B12, iron, and vitamin D. Interestingly, while correcting nutritional deficits can prevent neurodevelopmental adversity, overcorrecting them can in some cases be detrimental, so care needs to be taken when recommending supplementation in pregnancy. The potential benefits of using nutrition to prevent neurodiversity is shown by promising nutraceuticals, sulforaphane and creatine, both currently under investigation. They have the potential to promote improved neurodevelopmental outcomes through mitigation of pathological processes, including hypoxia, inflammation, and oxidative stress. Neurodevelopment is a complex process and whilst the role of micronutrients and macronutrients on the developing fetal brain is not completely understood, this review highlights the key findings thus far.
Collapse
Affiliation(s)
- Sarah Heland
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
| | - Neville Fields
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Joan Ellery
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Michael Fahey
- Paediatric Neurology Unit, Monash Children’s Hospital, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Kirsten Rebecca Palmer
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
The Effects of In Utero Fetal Hypoxia and Creatine Treatment on Mitochondrial Function in the Late Gestation Fetal Sheep Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3255296. [PMID: 35132347 PMCID: PMC8817846 DOI: 10.1155/2022/3255296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
Near-term acute hypoxia in utero can result in significant fetal brain injury, with some brain regions more vulnerable than others. As mitochondrial dysfunction is an underlying feature of the injury cascade following hypoxia, this study is aimed at characterizing mitochondrial function at a region-specific level in the near-term fetal brain after a period of acute hypoxia. We hypothesized that regional differences in mitochondrial function would be evident, and that prophylactic creatine treatment would mitigate mitochondrial dysfunction following hypoxia; thereby reducing fetal brain injury. Pregnant Border-Leicester/Merino ewes with singleton fetuses were surgically instrumented at 118 days of gestation (dGa; term is ~145 dGA). A continuous infusion of either creatine (n = 15; 6 mg/kg/h) or isovolumetric saline (n = 16; 1.5 ml/kg/h) was administered to the fetuses from 121 dGa. After 10 days of infusion, a subset of fetuses (8 saline-, 7 creatine-treated) were subjected to 10 minutes of umbilical cord occlusion (UCO) to induce a mild global fetal hypoxia. At 72 hours after UCO, the fetal brain was collected for high-resolution mitochondrial respirometry and molecular and histological analyses. The results show that the transient UCO-induced acute hypoxia impaired mitochondrial function in the hippocampus and the periventricular white matter and increased the incidence of cell death in the hippocampus. Creatine treatment did not rectify the changes in mitochondrial respiration associated with hypoxia, but there was a negative relationship between cell death and creatine content following treatment. Irrespective of UCO, creatine increased the proportion of cytochrome c bound to the inner mitochondrial membrane, upregulated the mRNA expression of the antiapoptotic gene Bcl2, and of PCG1-α, a driver of mitogenesis, in the hippocampus. We conclude that creatine treatment prior to brief, acute hypoxia does not fundamentally modify mitochondrial respiratory function, but may improve mitochondrial structural integrity and potentially increase mitogenesis and activity of antiapoptotic pathways.
Collapse
|
5
|
Kanekar S, Ettaro R, Hoffman MD, Ombach HJ, Brown J, Lynch C, Sheth CS, Renshaw PF. Sex-Based Impact of Creatine Supplementation on Depressive Symptoms, Brain Serotonin and SSRI Efficacy in an Animal Model of Treatment-Resistant Depression. Int J Mol Sci 2021; 22:ijms22158195. [PMID: 34360959 PMCID: PMC8348220 DOI: 10.3390/ijms22158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Rates of major depressive disorder (MDD) increase with living at altitude. In our model, rats housed at moderate altitude (in hypobaric hypoxia) exhibit increased depression-like behavior, altered brain serotonin and a lack of antidepressant response to most selective serotonin reuptake inhibitors (SSRIs). A forebrain deficit in the bioenergetic marker creatine is noted in people living at altitude or with MDD. Methods: Rats housed at 4500 ft were given dietary creatine monohydrate (CRMH, 4% w/w, 5 weeks) vs. un-supplemented diet, and impact on depression-like behavior, brain bioenergetics, serotonin and SSRI efficacy assessed. Results: CRMH significantly improved brain creatine in a sex-based manner. At altitude, CRMH increased serotonin levels in the female prefrontal cortex and striatum but reduced male striatal and hippocampal serotonin. Dietary CRMH was antidepressant in the forced swim test and anti-anhedonic in the sucrose preference test in only females at altitude, with motor behavior unchanged. CRMH improved fluoxetine efficacy (20 mg/kg) in only males at altitude: CRMH + SSRI significantly improved male striatal creatine and serotonin vs. CRMH alone. Conclusions: Dietary CRMH exhibits sex-based efficacy in resolving altitude-related deficits in brain biomarkers, depression-like behavior and SSRI efficacy, and may be effective clinically for SSRI-resistant depression at altitude. This is the first study to link CRMH treatment to improving brain serotonin.
Collapse
Affiliation(s)
- Shami Kanekar
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Correspondence: ; Tel.: +1-801-587-1477 or +1-801-585-5375
| | - Robert Ettaro
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Michael D. Hoffman
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Hendrik J. Ombach
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Jadeda Brown
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Cayla Lynch
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Chandni S. Sheth
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Perry F. Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
6
|
Machek SB, Bagley JR. Creatine Monohydrate Supplementation: Considerations for Cognitive Performance in Athletes. Strength Cond J 2018. [DOI: 10.1519/ssc.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Balestrino M, Sarocchi M, Adriano E, Spallarossa P. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids 2016; 48:1955-67. [DOI: 10.1007/s00726-016-2173-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
|