1
|
Scherer JS, Sandbote K, Schultze BL, Kretzberg J. Synaptic input and temperature influence sensory coding in a mechanoreceptor. Front Cell Neurosci 2023; 17:1233730. [PMID: 37771930 PMCID: PMC10522859 DOI: 10.3389/fncel.2023.1233730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Many neurons possess more than one spike initiation zone (SIZ), which adds to their computational power and functional flexibility. Integrating inputs from different origins is especially relevant for sensory neurons that rely on relative spike timing for encoding sensory information. Yet, it is poorly understood if and how the propagation of spikes generated at one SIZ in response to sensory stimulation is affected by synaptic inputs triggering activity of other SIZ, and by environmental factors like temperature. The mechanosensory Touch (T) cell in the medicinal leech is an ideal model system to study these potential interactions because it allows intracellular recording and stimulation of its soma while simultaneously touching the skin in a body-wall preparation. The T cell reliably elicits spikes in response to somatic depolarization, as well as to tactile skin stimulation. Latencies of spikes elicited in the skin vary across cells, depending on the touch location relative to the cell's receptive field. However, repetitive stimulation reveals that tactilely elicited spikes are more precisely timed than spikes triggered by somatic current injection. When the soma is hyperpolarized to mimic inhibitory synaptic input, first spike latencies of tactilely induced spikes increase. If spikes from both SIZ follow shortly after each other, the arrival time of the second spike at the soma can be delayed. Although the latency of spikes increases by the same factor when the temperature decreases, the effect is considerably stronger for the longer absolute latencies of spikes propagating from the skin to the soma. We therefore conclude that the propagation time of spikes from the skin is modulated by internal factors like synaptic inputs, and by external factors like temperature. Moreover, fewer spikes are detected when spikes from both origins are expected to arrive at the soma in temporal proximity. Hence, the leech T cell might be a key for understanding how the interaction of multiple SIZ impacts temporal and rate coding of sensory information, and how cold-blooded animals can produce adequate behavioral responses to sensory stimuli based on temperature-dependent relative spike timing.
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Bjarne L. Schultze
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Meiser S, Sleeboom JM, Arkhypchuk I, Sandbote K, Kretzberg J. Cell anatomy and network input explain differences within but not between leech touch cells at two different locations. Front Cell Neurosci 2023; 17:1186997. [PMID: 37565030 PMCID: PMC10411907 DOI: 10.3389/fncel.2023.1186997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanosensory cells in the leech share several common features with mechanoreceptors in the human glabrous skin. Previous studies showed that the six T (touch) cells in each body segment of the leech are highly variable in their responses to somatic current injection and change their excitability over time. Here, we investigate three potential reasons for this variability in excitability by comparing the responses of T cells at two soma locations (T2 and T3): (1) Differential effects of time-dependent changes in excitability, (2) divergent synaptic input from the network, and (3) different anatomical structures. These hypotheses were explored with a combination of electrophysiological double recordings, 3D reconstruction of neurobiotin-filled cells, and compartmental model simulations. Current injection triggered significantly more spikes with shorter latency and larger amplitudes in cells at soma location T2 than at T3. During longer recordings, cells at both locations increased their excitability over time in the same way. T2 and T3 cells received the same amount of synaptic input from the unstimulated network, and the polysynaptic connections between both T cells were mutually symmetric. However, we found a striking anatomical difference: While in our data set all T2 cells innervated two roots connecting the ganglion with the skin, 50% of the T3 cells had only one root process. The sub-sample of T3 cells with one root process was significantly less excitable than the T3 cells with two root processes and the T2 cells. To test if the additional root process causes higher excitability, we simulated the responses of 3D reconstructed cells of both anatomies with detailed multi-compartment models. The anatomical subtypes do not differ in excitability when identical biophysical parameters and a homogeneous channel distribution are assumed. Hence, all three hypotheses may contribute to the highly variable T cell responses, but none of them is the only factor accounting for the observed systematic difference in excitability between cells at T2 vs. T3 soma location. Therefore, future patch clamp and modeling studies are needed to analyze how biophysical properties and spatial distribution of ion channels on the cell surface contribute to the variability and systematic differences of electrophysiological phenotypes.
Collapse
Affiliation(s)
- Sonja Meiser
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jana Marie Sleeboom
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Institute of Physiology II, Faculty of Medicine, University Clinic Bonn (UKB), University of Bonn, Bonn, Germany
| | - Ihor Arkhypchuk
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Scherer JS, Riedesel OE, Arkhypchuk I, Meiser S, Kretzberg J. Initial Variability and Time-Dependent Changes of Neuronal Response Features Are Cell-Type-Specific. Front Cell Neurosci 2022; 16:858221. [PMID: 35573827 PMCID: PMC9092978 DOI: 10.3389/fncel.2022.858221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Different cell types are commonly defined by their distinct response features. But several studies proved substantial variability between cells of the same type, suggesting rather the appraisal of response feature distributions than a limitation to "typical" responses. Moreover, there is growing evidence that time-dependent changes of response features contribute to robust and functional network output in many neuronal systems. The individually characterized Touch (T), Pressure (P), and Retzius (Rz) cells in the medicinal leech allow for a rigid analysis of response features, elucidating differences between and variability within cell types, as well as their changes over time. The initial responses of T and P cells to somatic current injection cover a wide range of spike counts, and their first spike is generated with a high temporal precision after a short latency. In contrast, all Rz cells elicit very similar low spike counts with variable, long latencies. During prolonged electrical stimulation the resting membrane potential of all three cell types hyperpolarizes. At the same time, Rz cells reduce their spiking activity as expected for a departure from the spike threshold. In contrast, both mechanoreceptor types increase their spike counts during repeated stimulation, consistent with previous findings in T cells. A control experiment reveals that neither a massive current stimulation nor the hyperpolarization of the membrane potential is necessary for the mechanoreceptors' increase in excitability over time. These findings challenge the previously proposed involvement of slow K+-channels in the time-dependent activity changes. We also find no indication for a run-down of HCN channels over time, and a rigid statistical analysis contradicts several potential experimental confounders as the basis of the observed variability. We conclude that the time-dependent change in excitability of T and P cells could indicate a cell-type-specific shift between different spiking regimes, which also could explain the high variability in the initial responses. The underlying mechanism needs to be further investigated in more naturalistic experimental situations to disentangle the effects of varying membrane properties versus network interactions. They will show if variability in individual response features serves as flexible adaptation to behavioral contexts rather than just "randomness".
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Oda E. Riedesel
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Ihor Arkhypchuk
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Sonja Meiser
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Kearney G, Radice M, Merlinsky AS, Szczupak L. Intersegmental Interactions Give Rise to a Global Network. Front Neural Circuits 2022; 16:843731. [PMID: 35282329 PMCID: PMC8904721 DOI: 10.3389/fncir.2022.843731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Animal motor behaviors require the coordination of different body segments. Thus the activity of the networks that control each segment, which are distributed along the nerve cord, should be adequately matched in time. This temporal organization may depend on signals originated in the brain, the periphery or other segments. Here we evaluate the role of intersegmental interactions. Because of the relatively regular anatomy of leeches, the study of intersegmental coordination in these animals restricts the analysis to interactions among iterated units. We focused on crawling, a rhythmic locomotive behavior through which leeches move on solid ground. The motor pattern was studied ex vivo, in isolated ganglia and chains of three ganglia, and in vivo. Fictive crawling ex vivo (crawling) displayed rhythmic characteristics similar to those observed in vivo. Within the three-ganglion chains the motor output presented an anterior-posterior order, revealing the existence of a coordination mechanism that occurred in the absence of brain or peripheral signals. An experimental perturbation that reversibly abolished the motor pattern in isolated ganglia produced only a marginal effect on the motor activity recorded in three-ganglion chains. Therefore, the segmental central pattern generators present in each ganglion of the chain lost the autonomy observed in isolated ganglia, and constituted a global network that reduced the degrees of freedom of the system. However, the intersegmental phase lag in the three-ganglion chains was markedly longer than in vivo. This work suggests that intersegmental interactions operate as a backbone of correlated motor activity, but additional signals are required to enhance and speed coordination in the animal.
Collapse
Affiliation(s)
- Graciela Kearney
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Martina Radice
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Agustín Sanchez Merlinsky
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Lidia Szczupak
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|