1
|
Reisinger L, Demarchi G, Obleser J, Sedley W, Partyka M, Schubert J, Gehmacher Q, Roesch S, Suess N, Trinka E, Schlee W, Weisz N. Aberrant auditory prediction patterns robustly characterize tinnitus. eLife 2024; 13:RP99757. [PMID: 39854620 PMCID: PMC11684784 DOI: 10.7554/elife.99757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
| | - Jonas Obleser
- Department of Psychology, University of LübeckLübeckGermany
- Center of Brain, Behavior and Metabolism, University of LübeckLübeckGermany
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Marta Partyka
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
| | - Juliane Schubert
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
| | - Quirin Gehmacher
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Sebastian Roesch
- Department of Otolaryngology, University Hospital RegensburgRegensburgGermany
| | - Nina Suess
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
| | - Eugen Trinka
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University of RegensburgRegensburgGermany
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of SalzburgSalzburgAustria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
2
|
Yukhnovich EA, Alter K, Sedley W. What Do Mismatch Negativity (MMN) Responses Tell Us About Tinnitus? J Assoc Res Otolaryngol 2024:10.1007/s10162-024-00970-1. [PMID: 39681798 DOI: 10.1007/s10162-024-00970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Due to the heterogeneous causes, symptoms and associated comorbidities with tinnitus, there remains an unmet need for a clear biomarker of tinnitus presence. Previous research has suggested a "final pathway" of tinnitus presence, which occurs regardless of the specific mechanisms that resulted in alterations of auditory predictions and, eventually, tinnitus perception. Predictive inference mechanisms have been proposed as the possible basis for this final unifying pathway. A commonly used measure of prediction violation is mismatch negativity (MMN), an electrical potential generated in response to most stimuli that violate an established regularity. This narrative review discusses 16 studies comparing MMN between tinnitus and non-tinnitus groups. Methods varied considerably, including type of deviant, type of paradigm and carrier frequency. A minority of studies matched groups for age, sex and hearing, with few measuring hyperacusis. Frequency deviants were the most widely studied; at frequencies remote from tinnitus, MMN was consistently smaller in tinnitus groups, though hyperacusis or altered distress or attention could not be ruled out as explanatory factors. Few studies have used tinnitus-related frequencies; these showed larger MMN to upward frequency deviants above the tinnitus frequency, and larger MMN to upward intensity deviants at or close to the tinnitus frequency. However, the latter appears a correlate of hyperacusis rather than tinnitus, and tinnitus groups without hyperacusis instead show larger MMN to downward intensity deviants than controls. Other factors that affect MMN amplitudes included age, attention, and the specific characteristics of the range of stimuli across a particular experiment paradigm. As such, MMN cannot presently be considered a specific biomarker of tinnitus, but showed potential to objectively characterise a number of auditory processing traits relevant to tinnitus and hyperacusis.
Collapse
Affiliation(s)
| | - Kai Alter
- Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HH, UK
- Faculty of Modern and Medieval Languages and Linguistics and the Languages Sciences Interdisciplinary Research Centre, University of Cambridge, Cambridge, UK
| | - William Sedley
- Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Xue X, Liu P, Zhang C, Ding Z, Wang L, Jiang Y, Shen WD, Yang S, Wang F. Transcriptional profile changes caused by noise-induced tinnitus in the cochlear nucleus and inferior colliculus of the rat. Ann Med 2024; 56:2402949. [PMID: 39268590 PMCID: PMC11404370 DOI: 10.1080/07853890.2024.2402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 09/17/2024] Open
Abstract
INTRODUCTION Tinnitus is a prevalent and disabling condition characterized by the perception of sound in the absence of external acoustic stimuli. The hyperactivity of the auditory pathway is a crucial factor in the development of tinnitus. This study aims to examine genetic expression variations in the dorsal cochlear nucleus (DCN) and inferior colliculus (IC) following the onset of tinnitus using transcriptomic analysis. The goal is to investigate the relationship between hyperactivity in the DCN and IC. METHODS To confirm the presence of tinnitus behavior, we utilized the gap pre-pulse inhibition of the acoustic startle (GPIAS) response paradigm. In addition, we conducted auditory brainstem response (ABR) tests to determine the baseline hearing thresholds, and repeated the test one week after subjecting the rats to noise exposure (8-16 kHz, 126 dBHL, 2 h). Samples of tissue were collected from the DCN and IC in both the tinnitus and non-tinnitus groups of rats. We employed RNA sequencing and quantitative PCR techniques to analyze the changes in gene expression between these two groups. This allowed us to identify any specific genes or gene pathways that may be associated with the development or maintenance of tinnitus in the DCN and IC. RESULTS Our results demonstrated tinnitus-like behavior in rats exposed to noise, as evidenced by GPIAS measurements. We identified 61 upregulated genes and 189 downregulated genes in the DCN, along with 396 upregulated genes and 195 downregulated genes in the IC. Enrichment analysis of the DCN revealed the involvement of ion transmembrane transport regulation, synaptic transmission, and negative regulation of neuron apoptotic processes in the development of tinnitus. In the IC, the enrichment analysis indicated that glutamatergic synapses and neuroactive ligand-receptor interaction pathways may significantly contribute to the process of tinnitus development. Additionally, protein-protein interaction (PPI) networks were constructed, and 9 hub genes were selected based on their betweenness centrality rank in the DCN and IC, respectively. CONCLUSIONS Our findings reveal enrichment of differential expressed genes (DEGs) associated with pathways linked to alterations in neuronal excitability within the DCN and IC when comparing the tinnitus group to the non-tinnitus group. This indicates an increased trend in neuronal excitability within both the DCN and IC in the tinnitus model rats. Additionally, the enriched signaling pathways within the DCN related to changes in synaptic plasticity suggest that the excitability changes may propagate to IC. NEW AND NOTEWORTHY Our findings reveal gene expression alterations in neuronal excitability within the DCN and IC when comparing the tinnitus group to the non-tinnitus group at the transcriptome level. Additionally, the enriched signaling pathways related to changes in synaptic plasticity in the differentially expressed genes within the DCN suggest that the excitability changes may propagate to IC.
Collapse
Affiliation(s)
- Xinmiao Xue
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
| | - Peng Liu
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
| | - Chi Zhang
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiwei Ding
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
| | - Li Wang
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
| | - Yuke Jiang
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
| | - Wei-Dong Shen
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
| | - Shiming Yang
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
| | - Fangyuan Wang
- The Six Medical Center, PLA General Hospital, Beijing, PR China
- Medical School of Chinese PLA, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
| |
Collapse
|
4
|
Bolandi M, Javanbakht M, Shaabani M, Bakhshi E. Effectiveness of bimodal stimulation of the auditory-somatosensory system in the treatment of tonal tinnitus. Am J Otolaryngol 2024; 45:104449. [PMID: 39116719 DOI: 10.1016/j.amjoto.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND OBJECTIVES The dorsal cochlear nucleus (DCN) is the interaction site of auditory and somatosensory system inputs. According to the stochastic resonance theory, hearing loss increases the neural activity of the somatosensory system in the DCN and causes tinnitus. it is possible to modulate this neural hyperactivity by applying random noise through the auditory and somatosensory systems (bimodal stimulation). Therefore, this study aimed to investigate the effectiveness of the bimodal intervention based on the theory of stochastic resonance. METHODS The study divided 34 participants into unimodal and bimodal groups with 17 subjects in each. The bimodal group received customized acoustic stimulation along with transcutaneous auricular vagus nerve stimulation (tAVNS) and the unimodal group received customized acoustic stimulation along with tAVNS as a sham. The treatment sessions in both groups were 6 sessions and each session lasted for 20 min. The participants were evaluated before, immediately after, and one month after the completion of the intervention sessions, using the Tinnitus Handicap Inventory (THI) questionnaire and the mismatch negativity (MMN) test. RESULTS After the intervention sessions, the results indicated a statistically significant decrease in THI scores and a significant increase in the MMN amplitude in the bimodal group compared to the unimodal group. No significant changes in MMN latency were observed between the two groups. These changes were stable in the one-month follow-up visit. CONCLUSIONS Our study showed that bimodal stimulation is a better intervention option compared to unimodal stimulation. Bimodal stimulation may be an effective intervention method for some subjects with tinnitus, especially people with hearing loss who have tonal tinnitus.
Collapse
Affiliation(s)
- Masoud Bolandi
- Department of Audiology, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Mohanna Javanbakht
- Department of Audiology, University of Social Welfare and Rehabilitation Science, Tehran, Iran; Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Moslem Shaabani
- Department of Audiology, University of Social Welfare and Rehabilitation Science, Tehran, Iran; Rofeideh Rehabilitation Hospital, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Enayatollah Bakhshi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| |
Collapse
|
5
|
Chen F, Fahimi Hnazaee M, Vanneste S, Yasoda-Mohan A. Effective Connectivity Network of Aberrant Prediction Error Processing in Auditory Phantom Perception. Brain Connect 2024; 14:430-444. [PMID: 39135479 DOI: 10.1089/brain.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Introduction: Prediction error (PE) is key to perception in the predictive coding framework. However, previous studies indicated the varied neural activities evoked by PE in tinnitus patients. Here, we aimed to reconcile the conflict by (1) a more nuanced view of PE, which could be driven by changing stimulus (stimulus-driven PE [sPE]) and violation of current context (context-driven PE [cPE]) and (2) investigating the aberrant connectivity networks that are engaged in the processing of the two types of PEs in tinnitus patients. Methods: Ten tinnitus patients with normal hearing and healthy controls were recruited, and a local-global auditory oddball paradigm was applied to measure the electroencephalographic difference between the two groups during sPE and cPE conditions. Results: Overall, the sPE condition engaged bottom-up and top-down connections, whereas the cPE condition engaged mostly top-down connections. The tinnitus group showed decreased sensitivity to the sPE and increased sensitivity to the cPE condition. Particularly, the auditory cortex and posterior cingulate cortex were the hubs for processing cPE in the control and tinnitus groups, respectively, showing the orientation to an internal state in tinnitus. Furthermore, tinnitus patients showed stronger connectivity to the parahippocampus and pregenual anterior cingulate cortex for the establishment of the prediction during the cPE condition. Conclusion: These results begin to dissect the role of changes in stimulus characteristics versus changes in the context of processing the same stimulus in mechanisms of tinnitus generation. Impact Statement This study delves into the number dynamics of prediction error (PE) in tinnitus, proposing a dual framework distinguishing between stimulus-driven PE (sPE) and context-driven PE (cPE). Electroencephalographic data from tinnitus patients and controls revealed distinct connectivity patterns during sPE and cPE conditions. Tinnitus patients exhibited reduced sensitivity to sPE and increased sensitivity to cPE. The auditory cortex and posterior cingulate cortex emerged as pivotal regions for cPE processing in controls and tinnitus patients, indicative of an internal state orientation in tinnitus. Enhanced connectivity to the parahippocampus and pregenual anterior cingulate cortex underscores the role of context in tinnitus pathophysiology.
Collapse
Affiliation(s)
- Feifan Chen
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Mansoureh Fahimi Hnazaee
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
6
|
Brinkmann P, Devos JVP, van der Eerden JHM, Smit JV, Janssen MLF, Kotz SA, Schwartze M. Parallel EEG assessment of different sound predictability levels in tinnitus. Hear Res 2024; 450:109073. [PMID: 38996530 DOI: 10.1016/j.heares.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Tinnitus denotes the perception of a non-environmental sound and might result from aberrant auditory prediction. Successful prediction of formal (e.g., type) and temporal sound characteristics facilitates the filtering of irrelevant information, also labelled as 'sensory gating' (SG). Here, we explored if and how parallel manipulations of formal prediction violations and temporal predictability affect SG in persons with and without tinnitus. Age-, education- and sex-matched persons with and without tinnitus (N = 52) participated and listened to paired-tone oddball sequences, varying in formal (standard vs. deviant pitch) and temporal predictability (isochronous vs. random timing). EEG was recorded from 128 channels and data were analyzed by means of temporal spatial principal component analysis (tsPCA). SG was assessed by amplitude suppression for the 2nd tone in a pair and was observed in P50-like activity in both timing conditions and groups. Correspondingly, deviants elicited overall larger amplitudes than standards. However, only persons without tinnitus displayed a larger N100-like deviance response in the isochronous compared to the random timing condition. This result might imply that persons with tinnitus do not benefit similarly as persons without tinnitus from temporal predictability in deviance processing. Thus, persons with tinnitus might display less temporal sensitivity in auditory processing than persons without tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, the Netherlands
| | - Jana V P Devos
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Ear Nose Throat Head and Neck Surgery, Maastricht University Medical Center, Maastricht University, Maastricht 6229 HX, the Netherlands
| | - Jelle H M van der Eerden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Jasper V Smit
- Department of Ear, Nose, and Throat/Head and Neck Surgery, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht 6229 HX, the Netherlands
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, the Netherlands
| | - Michael Schwartze
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, the Netherlands.
| |
Collapse
|
7
|
Sendesen E, Colak H. Neural markers associated with improved tinnitus perception after tinnitus retraining therapy. Int J Audiol 2024:1-7. [PMID: 39037049 DOI: 10.1080/14992027.2024.2378800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Tinnitus retraining therapy (TRT) has been widely used in tinnitus management. However, its efficacy is often assessed through subjective methods. Here, we aimed to assess potential neural changes following TRT using mismatch negativity (MMN). DESIGN Chronic tinnitus (>6 months) patients participated in a six-month TRT program. We collected tinnitus psychoacoustic features and gathered the tinnitus handicap inventory (THI) before and after TRT. We also used a multi-featured paradigm, including frequency, intensity, duration, location and silent gap deviants, to elicit MMN response before and after TRT. Data were analyzed retrospectively. STUDY SAMPLE The study involved 26 chronic tinnitus patients. RESULTS Post-TRT measurements showed that MMN amplitudes significantly increased for all deviant conditions (p ≤ .03). However, we did not find a significant difference in MMN latencies for all deviant conditions (p ≥ .13). The THI scores of the patients significantly decreased following the TRT program (p < 0.001). Our results reveal improved subjective tinnitus perception following the TRT program. CONCLUSION These findings indicate that TRT might be a viable alternative in tinnitus management. The greater MMN amplitudes and improved subjective tinnitus perception raise the possibility that MMN can be a useful tool in tinnitus research and tinnitus patient follow-up.
Collapse
Affiliation(s)
- Eser Sendesen
- Department of Audiology, Hacettepe University, Ankara, Turkey
| | - Hasan Colak
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Yasoda-Mohan A, Faubert J, Ost J, Kropotov JD, Vanneste S. Investigating sensitivity to multi-domain prediction errors in chronic auditory phantom perception. Sci Rep 2024; 14:11036. [PMID: 38744906 PMCID: PMC11094085 DOI: 10.1038/s41598-024-61045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The perception of a continuous phantom in a sensory domain in the absence of an external stimulus is explained as a maladaptive compensation of aberrant predictive coding, a proposed unified theory of brain functioning. If this were true, these changes would occur not only in the domain of the phantom percept but in other sensory domains as well. We confirm this hypothesis by using tinnitus (continuous phantom sound) as a model and probe the predictive coding mechanism using the established local-global oddball paradigm in both the auditory and visual domains. We observe that tinnitus patients are sensitive to changes in predictive coding not only in the auditory but also in the visual domain. We report changes in well-established components of event-related EEG such as the mismatch negativity. Furthermore, deviations in stimulus characteristics were correlated with the subjective tinnitus distress. These results provide an empirical confirmation that aberrant perceptions are a symptom of a higher-order systemic disorder transcending the domain of the percept.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, School of Psychology, Trinity College Institute for Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jocelyn Faubert
- Faubert Lab, School of Optometry, University of Montreal, Montreal, Canada
| | - Jan Ost
- Brain Research Center for Advanced International Innovative and Interdisciplinary Neuromodulation, Ghent, Belgium
| | - Juri D Kropotov
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, St. Petersburg, Russia
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Psychology, Trinity College Institute for Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland.
- Brain Research Center for Advanced International Innovative and Interdisciplinary Neuromodulation, Ghent, Belgium.
| |
Collapse
|
9
|
Hockley A, Malmierca MS. Auditory processing control by the medial prefrontal cortex: A review of the rodent functional organisation. Hear Res 2024; 443:108954. [PMID: 38271895 DOI: 10.1016/j.heares.2024.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Afferent inputs from the cochlea transmit auditory information to the central nervous system, where information is processed and passed up the hierarchy, ending in the auditory cortex. Through these brain pathways, spectral and temporal features of sounds are processed and sent to the cortex for perception. There are also many mechanisms in place for modulation of these inputs, with a major source of modulation being based in the medial prefrontal cortex (mPFC). Neurons of the rodent mPFC receive input from the auditory cortex and other regions such as thalamus, hippocampus and basal forebrain, allowing them to encode high-order information about sounds such as context, predictability and valence. The mPFC then exerts control over auditory perception via top-down modulation of the central auditory pathway, altering perception of and responses to sounds. The result is a higher-order control of auditory processing that produces such characteristics as deviance detection, attention, avoidance and fear conditioning. This review summarises connections between mPFC and the primary auditory pathway, responses of mPFC neurons to auditory stimuli, how mPFC outputs shape the perception of sounds, and how changes to these systems during hearing loss and tinnitus may contribute to these conditions.
Collapse
Affiliation(s)
- A Hockley
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain.
| | - M S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Yasoda-Mohan A, Vanneste S. Development, Insults and Predisposing Factors of the Brain's Predictive Coding System to Chronic Perceptual Disorders-A Life-Course Examination. Brain Sci 2024; 14:86. [PMID: 38248301 PMCID: PMC10813926 DOI: 10.3390/brainsci14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The predictive coding theory is currently widely accepted as the theoretical basis of perception and chronic perceptual disorders are explained as the maladaptive compensation of the brain to a prediction error. Although this gives us a general framework to work with, it is still not clear who may be more susceptible and/or vulnerable to aberrations in this system. In this paper, we study changes in predictive coding through the lens of tinnitus and pain. We take a step back to understand how the predictive coding system develops from infancy, what are the different neural and bio markers that characterise this system in the acute, transition and chronic phases and what may be the factors that pose a risk to the aberration of this system. Through this paper, we aim to identify people who may be at a higher risk of developing chronic perceptual disorders as a reflection of aberrant predictive coding, thereby giving future studies more facets to incorporate in their investigation of early markers of tinnitus, pain and other disorders of predictive coding. We therefore view this paper to encourage the thinking behind the development of preclinical biomarkers to maladaptive predictive coding.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Global Brain Health Institute, Trinity College Dublin, D02 R123 Dublin, Ireland;
- Trinity College Institute for Neuroscience, Trinity College Dublin, D02 R123 Dublin, Ireland
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, D02 R123 Dublin, Ireland
| | - Sven Vanneste
- Global Brain Health Institute, Trinity College Dublin, D02 R123 Dublin, Ireland;
- Trinity College Institute for Neuroscience, Trinity College Dublin, D02 R123 Dublin, Ireland
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, D02 R123 Dublin, Ireland
| |
Collapse
|
11
|
Schilling A, Sedley W, Gerum R, Metzner C, Tziridis K, Maier A, Schulze H, Zeng FG, Friston KJ, Krauss P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023; 146:4809-4825. [PMID: 37503725 PMCID: PMC10690027 DOI: 10.1093/brain/awad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
Collapse
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Gerum
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Department of Physics and Astronomy and Center for Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | - Andreas Maier
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Holger Schulze
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology–Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Reisinger L, Demarchi G, Weisz N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J Assoc Res Otolaryngol 2023; 24:531-547. [PMID: 38015287 PMCID: PMC10752863 DOI: 10.1007/s10162-023-00916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tinnitus has been widely investigated in order to draw conclusions about the underlying causes and altered neural activity in various brain regions. Existing studies have based their work on different tinnitus frameworks, ranging from a more local perspective on the auditory cortex to the inclusion of broader networks and various approaches towards tinnitus perception and distress. Magnetoencephalography (MEG) provides a powerful tool for efficiently investigating tinnitus and aberrant neural activity both spatially and temporally. However, results are inconclusive, and studies are rarely mapped to theoretical frameworks. The purpose of this review was to firstly introduce MEG to interested researchers and secondly provide a synopsis of the current state. We divided recent tinnitus research in MEG into study designs using resting state measurements and studies implementing tone stimulation paradigms. The studies were categorized based on their theoretical foundation, and we outlined shortcomings as well as inconsistencies within the different approaches. Finally, we provided future perspectives on how to benefit more efficiently from the enormous potential of MEG. We suggested novel approaches from a theoretical, conceptual, and methodological point of view to allow future research to obtain a more comprehensive understanding of tinnitus and its underlying processes.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
13
|
Evidence for predictions established by phantom sound. Neuroimage 2022; 264:119766. [PMID: 36435344 DOI: 10.1016/j.neuroimage.2022.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Predictions, the bridge between the internal and external worlds, are established by prior experience and updated by sensory stimuli. Responses to omitted but unexpected stimuli, known as omission responses, can break the one-to-one mapping of stimulus-response and can expose predictions established by the preceding stimulus built up. While research into exogenous predictions (driven by external stimuli) is often reported, that into endogenous predictions (driven by internal percepts) is rarely available in the literature. Here, we report evidence for endogenous predictions established by the Zwicker tone illusion, a phantom pure-tone-like auditory percept following notch noises. We found that MMN, P300, and theta oscillations could be recorded using an omission paradigm in subjects who can perceive Zwicker tone illusions, but could not in those who cannot. The MMN and P300 responses relied on attention, but theta oscillations did not. In-depth analysis shows that an increase in single-trial theta power, including total and induced theta, with the endogenous prediction, is lateralized to the left frontal brain areas. Our study depicts that the brain automatically analyzes internal perception, progressively establishes predictions and yields prediction errors in the left frontal region when a violation occurs.
Collapse
|
14
|
Objective Detection of Tinnitus Based on Electrophysiology. Brain Sci 2022; 12:brainsci12081086. [PMID: 36009149 PMCID: PMC9406100 DOI: 10.3390/brainsci12081086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tinnitus, a common disease in the clinic, is associated with persistent pain and high costs to society. Several aspects of tinnitus, such as the pathophysiology mechanism, effective treatment, objective detection, etc., have not been elucidated. Any change in the auditory pathway can lead to tinnitus. At present, there is no clear and unified mechanism to explain tinnitus, and the hypotheses regarding its mechanism include auditory plasticity theory, cortical reorganization theory, dorsal cochlear nucleus hypothesis, etc. Current theories on the mechanism of tinnitus mainly focus on the abnormal activity of the central nervous system. Unfortunately, there is currently a lack of objective diagnostic methods for tinnitus. Developing a method that can detect tinnitus objectively is crucial, only in this way can we identify whether the patient really suffers from tinnitus in the case of cognitive impairment or medical disputes and the therapeutic effect of tinnitus. Electrophysiological investigations have prompted the development of an objective detection of tinnitus by potentials recorded in the auditory pathway. However, there is no objective indicator with sufficient sensitivity and specificity to diagnose tinnitus at present. Based on recent findings of studies with various methods, possible electrophysiological approaches to detect the presence of tinnitus have been summarized. We analyze the change of neural activity throughout the auditory pathway in tinnitus subjects and in patients with tinnitus of varying severity to find available parameters in these methods, which is helpful to further explore the feasibility of using electrophysiological methods for the objective detection of tinnitus.
Collapse
|
15
|
Transcranial electric and acoustic stimulation for tinnitus: study protocol for a randomized double-blind controlled trial assessing the influence of combined transcranial random noise and acoustic stimulation on tinnitus loudness and distress. Trials 2022; 23:418. [PMID: 35590399 PMCID: PMC9118607 DOI: 10.1186/s13063-022-06253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Background Tinnitus is the result of aberrant neuronal activity. As a novel treatment form, neuromodulation is used to modify neuronal activity of brain areas involved in tinnitus generation. Among the different forms of electric stimulation, transcranial random noise stimulation (tRNS) has been shown to be a promising treatment option for tinnitus. In addition, recent studies indicate that the reduction in tinnitus can be more pronounced when different modalities of stimulation techniques are combined (“bimodal stimulation”). TRNS can be used in combination with acoustic stimulation (AS), a further treatment option recognized in the literature. The aim of the proposed study is to investigate whether simultaneous tRNS and AS improve levels of tinnitus loudness and distress. Methods The intervention consists of bilateral high-definition tRNS (HD-tRNS) over the auditory cortex combined with the application of AS which is studied in a crossover design. The visits will be performed in 26 sessions. There will be 20 treatment sessions, divided into two blocks: active and sham HD-tRNS. Within the blocks, the interventions are divided into group A: HD-tRNS and AS, and group B: HD-tRNS alone. Furthermore, in addition to the assessments directly following the intervention sessions, there will be six extra sessions performed subsequently at the end of each block, after a period of some days (follow-ups 1 and 2) and a month after the last intervention (C). Primary outcome measures are analog scales for evaluation of subjective tinnitus loudness and distress, and the audiological measurement of minimum masking level (MML). Secondary outcome measures are brain activity as measured by electroencephalography and standardized questionnaires for evaluating tinnitus distress and severity. Discussion To the best of our knowledge, this is the first study which uses HD-tRNS combined with AS for tinnitus treatment. The crossover design permits the comparison between HD-tRNS active vs. sham and with vs. without AS. Thus, it will be possible to evaluate the efficacy of the combined approach to HD-tRNS alone. In addition, the use of different objective and subjective evaluations for tinnitus enable more reliable and valid results. Trial registration Swiss Ethics Committee (BASEC-Nr. 2020-02027); Swiss Federal Complementary Database (kofam.ch: SNCTP000004051); and ClinicalTrials.gov (clinicaltrials.gov: NCT04551404).
Collapse
|
16
|
De Vis C, Barry KM, Mulders WHAM. Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Evoked Activity in Medial Geniculate Nucleus. Front Synaptic Neurosci 2022; 14:840368. [PMID: 35300310 PMCID: PMC8921694 DOI: 10.3389/fnsyn.2022.840368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sensory gating is the process whereby irrelevant sensory stimuli are inhibited on their way to higher cortical areas, allowing for focus on salient information. Sensory gating circuitry includes the thalamus as well as several cortical regions including the prefrontal cortex (PFC). Defective sensory gating has been implicated in a range of neurological disorders, including tinnitus, a phantom auditory perception strongly associated with cochlear trauma. Recently, we have shown in rats that functional connectivity between PFC and auditory thalamus, i.e., the medial geniculate nucleus (MGN), changes following cochlear trauma, showing an increased inhibitory effect from PFC activation on the spontaneous firing rate of MGN neurons. In this study, we further investigated this phenomenon using a guinea pig model, in order to demonstrate the validity of our finding beyond a single species and extend data to include data on sound evoked responses. Effects of PFC electrical stimulation on spontaneous and sound-evoked activity of single neurons in MGN were recorded in anaesthetised guinea pigs with normal hearing or hearing loss 2 weeks after acoustic trauma. No effect, inhibition and excitation were observed following PFC stimulation. The proportions of these effects were not different in animals with normal hearing and hearing loss but the magnitude of effect was. Indeed, hearing loss significantly increased the magnitude of inhibition for sound evoked responses, but not for spontaneous activity. The findings support previous observations that PFC can modulate MGN activity and that functional changes occur within this pathway after cochlear trauma. These data suggest hearing loss can alter sensory gating which may be a contributing factor toward tinnitus development.
Collapse
|
17
|
Mohan A, Luckey A, Weisz N, Vanneste S. Predisposition to domain-wide maladaptive changes in predictive coding in auditory phantom perception. Neuroimage 2021; 248:118813. [PMID: 34923130 DOI: 10.1016/j.neuroimage.2021.118813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/30/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023] Open
Abstract
Tinnitus is hypothesised to be a predictive coding problem. Previous research indicates lower sensitivity to prediction errors (PEs) in tinnitus patients while processing auditory deviants corresponding to tinnitus-specific stimuli. However, based on research with patients with hallucinations and no psychosis we hypothesise tinnitus patients may be more sensitive to PEs produced by auditory stimuli that are not related to tinnitus characteristics. Specifically in patients with minimal to no hearing loss, we hypothesise a more top-down subtype of tinnitus that may be driven by maladaptive changes in an auditory predictive coding network. To test this, we use an auditory oddball paradigm with omission of global and local deviants, a measure that is previously shown to empirically characterise hierarchical prediction errors (PEs). We observe: (1) increased predictions characterised by increased pre-stimulus response and increased alpha connectivity between the parahippocampus, dorsal anterior cingulate cortex and parahippocampus, pregenual anterior cingulate cortex and posterior cingulate cortex; (2) increased PEs characterised by increased P300 amplitude and gamma activity and increased theta connectivity between auditory cortices, parahippocampus and dorsal anterior cingulate cortex in the tinnitus group; (3) increased overall feed-forward connectivity in theta from the auditory cortex and parahippocampus to the dorsal anterior cingulate cortex; (4) correlations of pre-stimulus theta activity to tinnitus loudness and alpha activity to tinnitus distress. These results provide empirical evidence of maladaptive changes in a hierarchical predictive coding network in a subgroup of tinnitus patients with minimal to no hearing loss. The changes in pre-stimulus activity and connectivity to non-tinnitus specific stimuli suggest that tinnitus patients not only produce strong predictions about upcoming stimuli but also may be predisposed to stimulus a-specific PEs in the auditory domain. Correlations with tinnitus-related characteristics may be a biomarker for maladaptive changes in auditory predictive coding.
Collapse
Affiliation(s)
- Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, College Green 2, Dublin, Ireland
| | - Alison Luckey
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, College Green 2, Dublin, Ireland
| | - Nathan Weisz
- Salzburg Brain Dynamics Lab, University of Salzburg, Austria
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, College Green 2, Dublin, Ireland; Lab for Clinical & Integrative Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, United States.
| |
Collapse
|
18
|
罗 扬, 冯 帅, 姜 学, 龚 树, 柳 柯. [Research progress in auditory center plasticity and tinnitus mechanism]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:1038-1041. [PMID: 34886612 PMCID: PMC10128358 DOI: 10.13201/j.issn.2096-7993.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 04/30/2023]
Abstract
Tinnitus is one of the most common clinical symptoms of otology, and its pathogenesis is still unclear. The mechanism of tinnitus has been studied through a cognitive progress from the periphery (cochlea) to auditory center to the limbic system. Auditory peripheral lesions, such as damages to ribbon synapses, may form excitatory deafferentation, then it induces the auditory center to start the compensatory gain, leading to an increase in excitatory response; If the damage is further aggravated, it may cause continuous enhancement of central gain effect, hyperexcitability may occur and leading to tinnitus. Besides, the limbic system may be involved in the maintenance or exacerbation of tinnitus symptoms. This paper reviews the recent researches on tinnitus mechanism and auditory center plasticity.
Collapse
Affiliation(s)
- 扬拓 罗
- 中国医科大学附属第一医院耳鼻咽喉科(沈阳,110001)
| | - 帅 冯
- 中国医科大学附属第一医院耳鼻咽喉科(沈阳,110001)
| | - 学钧 姜
- 中国医科大学附属第一医院耳鼻咽喉科(沈阳,110001)
| | | | | |
Collapse
|
19
|
Hu S, Hall DA, Zubler F, Sznitman R, Anschuetz L, Caversaccio M, Wimmer W. Bayesian brain in tinnitus: Computational modeling of three perceptual phenomena using a modified Hierarchical Gaussian Filter. Hear Res 2021; 410:108338. [PMID: 34469780 DOI: 10.1016/j.heares.2021.108338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Recently, Bayesian brain-based models emerged as a possible composite of existing theories, providing an universal explanation of tinnitus phenomena. Yet, the involvement of multiple synergistic mechanisms complicates the identification of behavioral and physiological evidence. To overcome this, an empirically tested computational model could support the evaluation of theoretical hypotheses by intrinsically encompassing different mechanisms. The aim of this work was to develop a generative computational tinnitus perception model based on the Bayesian brain concept. The behavioral responses of 46 tinnitus subjects who underwent ten consecutive residual inhibition assessments were used for model fitting. Our model was able to replicate the behavioral responses during residual inhibition in our cohort (median linear correlation coefficient of 0.79). Using the same model, we simulated two additional tinnitus phenomena: residual excitation and occurrence of tinnitus in non-tinnitus subjects after sensory deprivation. In the simulations, the trajectories of the model were consistent with previously obtained behavioral and physiological observations. Our work introduces generative computational modeling to the research field of tinnitus. It has the potential to quantitatively link experimental observations to theoretical hypotheses and to support the search for neural signatures of tinnitus by finding correlates between the latent variables of the model and measured physiological data.
Collapse
Affiliation(s)
- Suyi Hu
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Department of Psychology, School of Social Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Frédéric Zubler
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Raphael Sznitman
- Artificial Intelligence in Medical Imaging, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Lukas Anschuetz
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Marco Caversaccio
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Wilhelm Wimmer
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
20
|
Zimdahl JW, Thomas H, Bolland SJ, Leggett K, Barry KM, Rodger J, Mulders WHAM. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus. Front Neurosci 2021; 15:693935. [PMID: 34366777 PMCID: PMC8339289 DOI: 10.3389/fnins.2021.693935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Tinnitus, a phantom auditory perception that can seriously affect quality of life, is generally triggered by cochlear trauma and associated with aberrant activity throughout the auditory pathways, often referred to as hyperactivity. Studies suggest that non-auditory structures, such as prefrontal cortex (PFC), may be involved in tinnitus generation, by affecting sensory gating in auditory thalamus, allowing hyperactivity to reach the cortex and lead to perception. Indeed, human studies have shown that repetitive transcranial magnetic stimulation (rTMS) of PFC can alleviate tinnitus. The current study investigated whether this therapeutic effect is achieved through inhibition of thalamic hyperactivity, comparing effects of two common clinical rTMS protocols with sham treatment, in a guinea pig tinnitus model. Animals underwent acoustic trauma and once tinnitus developed were treated with either intermittent theta burst stimulation (iTBS), 20 Hz rTMS, or sham rTMS (10 days, 10 min/day; weekdays only). Tinnitus was reassessed and extracellular recordings of spontaneous tonic and burst firing rates in auditory thalamus made. To verify effects in PFC, densities of neurons positive for calcium-binding proteins, calbindin and parvalbumin, were investigated using immunohistochemistry. Both rTMS protocols significantly reduced tinnitus compared to sham. However, spontaneous tonic firing decreased following 20 Hz stimulation and increased following iTBS in auditory thalamus. Burst rate was significantly different between 20 Hz and iTBS stimulation, and burst duration was increased only after 20 Hz treatment. Density of calbindin, but not parvalbumin positive neurons, was significantly increased in the most dorsal region of PFC indicating that rTMS directly affected PFC. Our results support the involvement of PFC in tinnitus modulation, and the therapeutic benefit of rTMS on PFC in treating tinnitus, but indicate this is not achieved solely by suppression of thalamic hyperactivity.
Collapse
Affiliation(s)
- Jack W Zimdahl
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Harrison Thomas
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Samuel J Bolland
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | - Kerry Leggett
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kristin M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | | |
Collapse
|
21
|
Brinkmann P, Kotz SA, Smit JV, Janssen MLF, Schwartze M. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Struct Funct 2021; 226:1659-1676. [PMID: 33934235 PMCID: PMC8203542 DOI: 10.1007/s00429-021-02284-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/21/2021] [Indexed: 01/12/2023]
Abstract
Tinnitus is the perception of a 'ringing' sound without an acoustic source. It is generally accepted that tinnitus develops after peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but could ultimately also establish new directions for treatment options for persons with tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jasper V Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
| |
Collapse
|
22
|
De Ridder D, Vanneste S. The Bayesian brain in imbalance: Medial, lateral and descending pathways in tinnitus and pain: A perspective. PROGRESS IN BRAIN RESEARCH 2020; 262:309-334. [PMID: 33931186 DOI: 10.1016/bs.pbr.2020.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tinnitus and pain share similarities in their anatomy, pathophysiology, clinical picture and treatments. Based on what is known in the pain field, a heuristic model can be proposed for the pathophysiolgy of tinnitus. This heuristic pathophysiological model suggests that pain and tinnitus are the consequence of an imbalance between two pain/tinnitus evoking pathways, i.e., a lateral sensory pathway and a medial affective pathway, both of which are not balanced anymore by a pain/noise inhibitory pathway. Mechanistically, based on the Bayesian brain concept, it can be explained by a switch occuring under influence of the rostral to dorsal anterior cingulate cortex of its prior predictions, i.e., a reference resetting, in which the pain/tinnitus state is considered as the new reference state. This reference resetting is confirmed by the nucleus accumbens as part of the reward system and maintained by connectivity changes between the nucleus accumbens and the pregenual anterior cingulate cortex. As a consequence it can be suggested to treat pain/tinnitus via reconditioning, either surgically or non-surgically. The model can also be used to develop objective measures for tinnitus and pain via supervised machine learning.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Abstract
Many individuals with tinnitus report experiencing hyperacusis (enhanced sensitivity to sounds). However, estimates of the association between hyperacusis and tinnitus is lacking. Here, we investigate this relationship in a Swedish study. A total of 3645 participants (1984 with tinnitus and 1661 without tinnitus) were enrolled via LifeGene, a study from the general Swedish population, aged 18-90 years, and provided information on socio-demographic characteristics, as well as presence of hyperacusis and its severity. Tinnitus presence and severity were self-reported or assessed using the Tinnitus Handicap Inventory (THI). Phenotypes of tinnitus with (n = 1388) or without (n = 1044) hyperacusis were also compared. Of 1661 participants without tinnitus, 1098 (66.1%) were women and 563 were men (33.9%), and the mean (SD) age was 45.1 (12.9). Of 1984 participants with tinnitus, 1034 (52.1%) were women and 950 (47.9%) were men, and the mean (SD) age was 47.7 (14.0) years. Hyperacusis was associated with any tinnitus [Odds ratio (OR) 3.51, 95% confidence interval (CI) 2.99-4.13], self-reported severe tinnitus (OR 7.43, 95% CI 5.06-10.9), and THI ≥ 58 (OR 12.1, 95% CI 7.06-20.6). The association with THI ≥ 58 was greater with increasing severity of hyperacusis, the ORs being 8.15 (95% CI 4.68-14.2) for moderate and 77.4 (95% CI 35.0-171.3) for severe hyperacusis. No difference between sexes was observed in the association between hyperacusis and tinnitus. The occurrence of hyperacusis in severe tinnitus is as high as 80%, showing a very tight relationship. Discriminating the pathophysiological mechanisms between the two conditions in cases of severe tinnitus will be challenging, and optimized study designs are necessary to better understand the mechanisms behind the strong relationship between hyperacusis and tinnitus.
Collapse
|