1
|
Soloperto A, Bisio M, Palazzolo G, Chiappalone M, Bonifazi P, Difato F. Modulation of Neural Network Activity through Single Cell Ablation: An in Vitro Model of Minimally Invasive Neurosurgery. Molecules 2016; 21:E1018. [PMID: 27527143 PMCID: PMC6274492 DOI: 10.3390/molecules21081018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
The technological advancement of optical approaches, and the growth of their applications in neuroscience, has allowed investigations of the physio-pathology of neural networks at a single cell level. Therefore, better understanding the role of single neurons in the onset and progression of neurodegenerative conditions has resulted in a strong demand for surgical tools operating with single cell resolution. Optical systems already provide subcellular resolution to monitor and manipulate living tissues, and thus allow understanding the potentiality of surgery actuated at single cell level. In the present work, we report an in vitro experimental model of minimally invasive surgery applied on neuronal cultures expressing a genetically encoded calcium sensor. The experimental protocol entails the continuous monitoring of the network activity before and after the ablation of a single neuron, to provide a robust evaluation of the induced changes in the network activity. We report that in subpopulations of about 1000 neurons, even the ablation of a single unit produces a reduction of the overall network activity. The reported protocol represents a simple and cost effective model to study the efficacy of single-cell surgery, and it could represent a test-bed to study surgical procedures circumventing the abrupt and complete tissue removal in pathological conditions.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Marta Bisio
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Michela Chiappalone
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain.
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
2
|
Oe M, Ogawa H. Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus. PLoS One 2013; 8:e80184. [PMID: 24244644 PMCID: PMC3828193 DOI: 10.1371/journal.pone.0080184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.
Collapse
Affiliation(s)
- Momoko Oe
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
3
|
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front Neural Circuits 2012; 6:108. [PMID: 23269913 PMCID: PMC3526811 DOI: 10.3389/fncir.2012.00108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022] Open
Abstract
Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes ("optic flow"). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action-perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Neurobiology and Centre of Excellence “Cognitive Interaction Technology”Bielefeld University, Germany
| | | | | | | | | |
Collapse
|
4
|
Rien D, Kern R, Kurtz R. Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons. Eur J Neurosci 2011; 34:705-16. [PMID: 21819463 DOI: 10.1111/j.1460-9568.2011.07801.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several physiological mechanisms allow sensory information to be propagated in neuronal networks. According to the conventional view of signal processing, graded changes of membrane potential at the dendrite are converted into a sequence of spikes. However, in many sensory receptors and several types of mostly invertebrate neurons, graded potential changes have a direct impact on the cells' output signals. The visual system of the blowfly Calliphora vicina is a good model system to study synaptic transmission in vivo during sensory stimulation. We recorded extracellularly from an identified motion-sensitive neuron while simultaneously measuring and controlling the membrane potential of individual elements of its presynaptic input ensemble. The membrane potential in the terminals of the presynaptic neuron is composed of two components, graded membrane potential changes and action potentials. To dissociate the roles of action potentials and graded potential changes in synaptic transmission we used voltage-clamp-controlled current-clamp techniques to suppress the graded membrane potential changes without affecting action potentials. Our results indicate that both the graded potential and the action potentials of the presynaptic neuron have an impact on the spiking characteristics of the postsynaptic neuron. Although a tight temporal coupling between pre- and postsynaptic spikes exists, the timing between these spikes is also affected by graded potential changes. We propose that the control of synaptic transfer of a dynamically complex signal by graded changes in membrane potential and spikes is useful to enable a temporally precise coupling of spikes in response to sudden transitions in stimulus intensity.
Collapse
Affiliation(s)
- Diana Rien
- Department of Neurobiology, Faculty of Biology, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany.
| | | | | |
Collapse
|
5
|
Borst A, Weber F. Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network. PLoS One 2011; 6:e16303. [PMID: 21305019 PMCID: PMC3031557 DOI: 10.1371/journal.pone.0016303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/21/2010] [Indexed: 12/02/2022] Open
Abstract
Optic flow based navigation is a fundamental way of visual course control described in many different species including man. In the fly, an essential part of optic flow analysis is performed in the lobula plate, a retinotopic map of motion in the environment. There, the so-called lobula plate tangential cells possess large receptive fields with different preferred directions in different parts of the visual field. Previous studies demonstrated an extensive connectivity between different tangential cells, providing, in principle, the structural basis for their large and complex receptive fields. We present a network simulation of the tangential cells, comprising most of the neurons studied so far (22 on each hemisphere) with all the known connectivity between them. On their dendrite, model neurons receive input from a retinotopic array of Reichardt-type motion detectors. Model neurons exhibit receptive fields much like their natural counterparts, demonstrating that the connectivity between the lobula plate tangential cells indeed can account for their complex receptive field structure. We describe the tuning of a model neuron to particular types of ego-motion (rotation as well as translation around/along a given body axis) by its ‘action field’. As we show for model neurons of the vertical system (VS-cells), each of them displays a different type of action field, i.e., responds maximally when the fly is rotating around a particular body axis. However, the tuning width of the rotational action fields is relatively broad, comparable to the one with dendritic input only. The additional intra-lobula-plate connectivity mainly reduces their translational action field amplitude, i.e., their sensitivity to translational movements along any body axis of the fly.
Collapse
Affiliation(s)
- Alexander Borst
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| | | |
Collapse
|
6
|
Affiliation(s)
- Alexander Borst
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| | - Juergen Haag
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| | - Dierk F. Reiff
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| |
Collapse
|
7
|
Carver SG, Kiemel T, Cowan NJ, Jeka JJ. Optimal motor control may mask sensory dynamics. BIOLOGICAL CYBERNETICS 2009; 101:35-42. [PMID: 19408009 PMCID: PMC2778031 DOI: 10.1007/s00422-009-0313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 04/07/2009] [Indexed: 05/27/2023]
Abstract
Properties of neural controllers for closed-loop sensorimotor behavior can be inferred with system identification. Under the standard paradigm, the closed-loop system is perturbed (input), measurements are taken (output), and the relationship between input and output reveals features of the system under study. Here we show that under common assumptions made about such systems (e.g. the system implements optimal control with a penalty on mechanical, but not sensory, states) important aspects of the neural controller (its zeros mask the modes of the sensors) remain hidden from standard system identification techniques. Only by perturbing or measuring the closed-loop system "between" the sensor and the control can these features be exposed with closed-loop system identification methods; while uncommon, there exist noninvasive techniques such as galvanic vestibular stimulation that perturb between sensor and controller in this way.
Collapse
Affiliation(s)
- Sean G Carver
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
8
|
Beckers U, Egelhaaf M, Kurtz R. Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Neuroscience 2009; 160:639-50. [DOI: 10.1016/j.neuroscience.2009.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 11/16/2022]
|
9
|
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system. J Neurosci 2008; 28:9183-93. [PMID: 18784299 DOI: 10.1523/jneurosci.1936-08.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although many adaptation-induced effects on neuronal response properties have been described, it is often unknown at what processing stages in the nervous system they are generated. We focused on fly visual motion-sensitive neurons to identify changes in response characteristics during prolonged visual motion stimulation. By simultaneous recordings of synaptically coupled neurons, we were able to directly compare adaptation-induced effects at two consecutive processing stages in the fly visual motion pathway. This allowed us to narrow the potential sites of adaptation effects within the visual system and to relate them to the properties of signal transfer between neurons. Motion adaptation was accompanied by a response reduction, which was somewhat stronger in postsynaptic than in presynaptic cells. We found that the linear representation of motion velocity degrades during adaptation to a white-noise velocity-modulated stimulus. This effect is caused by an increasingly nonlinear velocity representation rather than by an increase of noise and is similarly strong in presynaptic and postsynaptic neurons. In accordance with this similarity, the dynamics and the reliability of interneuronal signal transfer remained nearly constant. Thus, adaptation is mainly based on processes located in the presynaptic neuron or in more peripheral processing stages. In contrast, changes of transfer properties at the analyzed synapse or in postsynaptic spike generation contribute little to changes in velocity coding during motion adaptation.
Collapse
|
10
|
Kalb J, Egelhaaf M, Kurtz R. Adaptation changes directional sensitivity in a visual motion-sensitive neuron of the fly. Vision Res 2008; 48:1735-1742. [PMID: 18556040 DOI: 10.1016/j.visres.2008.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/09/2008] [Accepted: 05/07/2008] [Indexed: 11/30/2022]
Abstract
The blowfly visual system is a well-suited model to investigate the functional consequences of adaptation. Similar to cortical motion-sensitive neurons, fly tangential cells are directional selective and adapt during prolonged stimulation. Here we demonstrate in a tangential cell large changes in directionality after adaptation with motion in one direction. Surprisingly, depending on stimulation parameters, sensitivity for motion in the adapted direction relative to the unadapted direction can be either enhanced or attenuated. A simple model reproduces our results. It only incorporates previously identified changes in contrast sensitivity with motion adaptation. Thus, novel forms of motion adaptation seem unnecessary.
Collapse
Affiliation(s)
- Julia Kalb
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
11
|
Wertz A, Borst A, Haag J. Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J Neurosci 2008; 28:3131-40. [PMID: 18354016 PMCID: PMC6670693 DOI: 10.1523/jneurosci.5460-07.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/31/2008] [Accepted: 02/07/2008] [Indexed: 11/21/2022] Open
Abstract
For visual orientation and course stabilization, flies rely heavily on the optic flow perceived by the animal during flight. The processing of optic flow is performed in motion-sensitive tangential cells of the lobula plate, which are well described with respect to their visual response properties and the connectivity among them. However, little is known about the postsynaptic descending neurons, which convey motion information to the motor circuits in the thoracic ganglion. Here we investigate the physiology and connectivity of an identified premotor descending neuron, called DNOVS2 (for descending neuron of the ocellar and vertical system). We find that DNOVS2 is tuned in a supralinear way to rotation around the longitudinal body axis. Experiments involving stimulation of the ipsilateral and the contralateral eye indicate that ipsilateral computation of motion information is modified nonlinearly by motion information from the contralateral eye. Performing double recordings of DNOVS2 and lobula plate tangential cells, we find that DNOVS2 is connected ipsilaterally to a subset of vertical-sensitive cells. From the contralateral eye, DNOVS2 receives input most likely from V2, a heterolateral spiking neuron. This specific neural circuit is sufficient for the tuning of DNOVS2, making it probably an important element in optomotor roll movements of the head and body around the fly's longitudinal axis.
Collapse
Affiliation(s)
- Adrian Wertz
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
12
|
Haag J, Borst A. Reciprocal inhibitory connections within a neural network for rotational optic-flow processing. Front Neurosci 2007; 1:111-21. [PMID: 18982122 PMCID: PMC2518051 DOI: 10.3389/neuro.01.1.1.008.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 12/05/2022] Open
Abstract
Neurons in the visual system of the blowfly have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow–field selectivity in proximal Vertical System (VS)-cells, a particular subset of tangential cells in the fly. These cells have local preferred directions that are distributed such as to match the flow field occurring during a rotation of the fly. However, the neural circuitry leading to this selectivity is not fully understood. Through dual intracellular recordings from proximal VS cells and other tangential cells, we characterized the specific wiring between VS cells themselves and between proximal VS cells and horizontal sensitive tangential cells. We discovered a spiking neuron (Vi) involved in this circuitry that has not been described before. This neuron turned out to be connected to proximal VS cells via gap junctions and, in addition, it was found to be inhibitory onto VS1.
Collapse
Affiliation(s)
- Juergen Haag
- Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, Martinsried Germany
| | | |
Collapse
|
13
|
Haag J, Wertz A, Borst A. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 2007; 27:1992-2000. [PMID: 17314295 PMCID: PMC6673546 DOI: 10.1523/jneurosci.4393-06.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many motion-sensitive tangential cells of the lobula plate in blowflies are well described with respect to their visual response properties and the connectivity among them. They have large and complex receptive fields with different preferred directions in different parts of their receptive fields matching the optic flow that occurs during various flight maneuvers. However, much less is known about how tangential cells connect to postsynaptic neurons descending to the motor circuits in the thoracic ganglion and how optic flow is represented in these downstream neurons. Here we describe the physiology and the connectivity of a prominent descending neuron called DNOVS1 (for descending neurons of the ocellar and vertical system). We find that DNOVS1 is electrically coupled to a subset of vertical system cells. The specific wiring leads to a preference of DNOVS1 for rotational flow fields around a particular body axis. In addition, DNOVS1 receives input from interneurons connected to the ocelli.
Collapse
Affiliation(s)
- Juergen Haag
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
14
|
Beckers U, Egelhaaf M, Kurtz R. Synapses in the fly motion-vision pathway: evidence for a broad range of signal amplitudes and dynamics. J Neurophysiol 2007; 97:2032-41. [PMID: 17215505 DOI: 10.1152/jn.01116.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses are generally considered to operate efficiently only when their signaling range matches the spectrum of prevailing presynaptic signals in terms of both amplitudes and dynamics. However, the prerequisites for optimally matching the signaling ranges may differ between spike-mediated and graded synaptic transmission. This poses a problem for synapses that convey both graded and spike signals at the same time. We addressed this issue by tracing transmission systematically in vivo in the blowfly's visual-motion pathway by recording from single neurons that receive mixed potential signals consisting of rather slow graded fluctuations superimposed with highly variable spikes from a small number of presynaptic elements. Both pre- and postsynaptic neurons were previously shown to represent preferred-direction motion velocity reliably and linearly at low fluctuation frequencies. To selectively assess the performance of individual synapses and to precisely control presynaptic signals, we voltage clamped one of the presynaptic neurons. Results showed that synapses can effectively convey signals over a much larger amplitude and frequency range than is normally used during graded transmission of visual signals. An explanation for this unexpected finding might lie in the transmission of the spike component that reaches larger amplitudes and contains higher frequencies than graded signals.
Collapse
Affiliation(s)
- Ulrich Beckers
- Department of Neurobiology, University Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany.
| | | | | |
Collapse
|
15
|
Laser literature watch. Photomed Laser Surg 2006; 24:661-76. [PMID: 17069502 DOI: 10.1089/pho.2006.24.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|