1
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
2
|
Yu H, Shi J, Lin Y, Zhang Y, Luo Q, Huang S, Wang S, Wei J, Huang J, Li C, Ji L. Icariin Ameliorates Alzheimer's Disease Pathology by Alleviating Myelin Injury in 3 × Tg-AD Mice. Neurochem Res 2022; 47:1049-1059. [PMID: 35037164 DOI: 10.1007/s11064-021-03507-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by excessive deposition of β amyloid (Aβ), hyperphosphorylation of tau protein, and neuronal cell death. Recent studies have shown that myelin cell damage, which leads to cognitive dysfunction, occurs before AD-related pathological changes. Here, we examine the effect of icariin (ICA), a prenylated flavonol glycoside, in improving cognitive function in AD model mice. ICA has been reported to exhibit cardiovascular protective functions and antiaging effects. In this study, we used 3 × Tg-AD mice as an AD model. The Morris water maze and Y maze tests were performed to assess the learning and memory of the mice. Immunofluorescence analysis of Aβ1-42 deposition and myelin basic protein (MBP) expression in the mouse hippocampus was performed. Tau protein phosphorylation and MBP protein expression in the hippocampus were further analyzed by Western blotting. Myelin damage in the mouse optic nerve was evaluated by electron microscopy, and LFB staining was performed to assess myelin morphology in the mouse corpus callosum. MBP, Mpp5, and Egr2 transcript levels were quantified by qPCR. We observed that ICA treatment improved the learning and memory of 3 × Tg-AD mice and reduced Aβ deposition and tau protein phosphorylation in the hippocampus. Moreover, this treatment protocol increased myelin-related gene expression and reduced myelin damage.
Collapse
Affiliation(s)
- Hongxia Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianhong Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiyou Lin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yehui Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qihang Luo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Suo Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sichen Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiale Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junhao Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liting Ji
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Sterling N, Duncan AR, Park R, Koolen DA, Shi J, Cho SH, Benke PJ, Grant PE, Genetti CA, VanNoy GE, Juusola J, McWalter K, Parboosingh JS, Lamont RE, Bernier FP, Smith C, Harris DJ, Stegmann APA, Innes AM, Kim S, Agrawal PB. De novo variants in MPP5 cause global developmental delay and behavioral changes. Hum Mol Genet 2021; 29:3388-3401. [PMID: 33073849 DOI: 10.1093/hmg/ddaa224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/27/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described. We identified three patients with heterozygous MPP5 de novo variants (DNV) and global developmental delay (GDD) and compared their phenotypes and magnetic resonance imaging (MRI) to ascertain how MPP5 DNV leads to GDD. All three patients with MPP5 DNV experienced GDD with language delay/regression and behavioral changes. MRI ranged from normal to decreased gyral folding and microcephaly. The effects of MPP5 depletion on the developing brain were assessed by creating a heterozygous conditional knock out (het CKO) murine model with central nervous system (CNS)-specific Nestin-Cre drivers. In the het CKO model, Mpp5 depletion led to microcephaly, decreased cerebellar volume and cortical thickness. Het CKO mice had decreased ependymal cells and Mpp5 at the apical surface of cortical ventricular zone compared with wild type. Het CKO mice also failed to maintain progenitor pools essential for neurogenesis. The proportion of cortical cells undergoing apoptotic cell death increased, suggesting that cell death reduces progenitor population and neuron number. Het CKO mice also showed behavioral changes, similar to our patients. To our knowledge, this is the first report to show that variants in MPP5 are associated with GDD, behavioral abnormalities and language regression/delay. Murine modeling shows that neurogenesis is likely altered in these individuals, with cell death and skewed cellular composition playing significant roles.
Collapse
Affiliation(s)
- Noelle Sterling
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - Anna R Duncan
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Raehee Park
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Seo-Hee Cho
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - Paul J Benke
- Division of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL 33021, USA
| | - Patricia E Grant
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Casie A Genetti
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Grace E VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jane Juusola
- Clinical Genomics Program, GeneDx, Gaithersburg, MD 20877, USA
| | - Kirsty McWalter
- Clinical Genomics Program, GeneDx, Gaithersburg, MD 20877, USA
| | - Jillian S Parboosingh
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Ryan E Lamont
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Francois P Bernier
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Christopher Smith
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - David J Harris
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Seonhee Kim
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc Natl Acad Sci U S A 2020; 117:28102-28113. [PMID: 33106410 DOI: 10.1073/pnas.2007432117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Better understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase. Sciatic nerves of such mice showed thinner myelin of large diameter axons and gross aberrations in myelin organization affecting the nodes of Ranvier, the Schmidt-Lanterman incisures, and Cajal bands. Nonmyelinating SCs showed a striking inability to engulf small diameter nerve fibers. SCs of mutant mice showed a distorted Golgi morphology and disappearance of OSBP at the cis-Golgi compartment, together with a complete loss of GOLPH3 from the entire Golgi. Accordingly, the cholesterol and sphingomyelin contents of sciatic nerves were greatly reduced and so was the number of caveolae observed in SCs. Although the conduction velocity of sciatic nerves of mutant mice showed an 80% decrease, the mice displayed only subtle impairment in their motor functions. Our analysis revealed that Golgi functions supported by PI4KB are critically important for proper myelination through control of lipid metabolism, protein glycosylation, and organization of microvilli in the nodes of Ranvier of peripheral nerves.
Collapse
|
5
|
Patel A, Rumsey JW, Lorance C, Long CJ, Lee B, Tetard L, Lambert S, Hickman JJ. Myelination and Node of Ranvier Formation in a Human Motoneuron-Schwann Cell Serum-Free Coculture. ACS Chem Neurosci 2020; 11:2615-2623. [PMID: 32786317 DOI: 10.1021/acschemneuro.0c00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myelination and node of Ranvier formation play an important role in the rapid conduction of nerve impulses, referred to as saltatory conduction, along axons in the peripheral nervous system. We report a human-human myelination model using human primary Schwann cells (SCs) and human-induced pluripotent stem-cell-derived motoneurons utilizing a serum-free medium supplemented with ascorbate to induce myelination, where 41.6% of SCs expressed the master transcription factor for myelination, early growth response protein 2. After 30 days in coculture, myelin segments were visualized using immunocytochemistry for myelin basic protein surrounding neurofilament-stained motor neuron axons, which was confirmed via 3D confocal Raman microscopy, a viable alternative for transmission electron microscopy analysis. The myelination efficiency was 65%, and clusters of voltage-gated sodium channels and the paranodal protein contactin-associated protein 1 indicated node of Ranvier formation. This model has applications to study remyelination and demyelinating diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, and anti-myelin-associated glycoprotein peripheral neuropathy.
Collapse
Affiliation(s)
- Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - John W. Rumsey
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Case Lorance
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Christopher J. Long
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Briana Lee
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - James J. Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| |
Collapse
|
6
|
Cherra SJ, Goncharov A, Boassa D, Ellisman M, Jin Y. C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. J Neurogenet 2020; 34:298-306. [PMID: 32366143 DOI: 10.1080/01677063.2020.1726915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Song GJ, Gupta DP, Rahman MH, Park HT, Al Ghouleh I, Bisello A, Lee MG, Park JY, Park HH, Jun JH, Chung KW, Choi BO, Suk K. Loss-of-function of EBP50 is a new cause of hereditary peripheral neuropathy: EBP50 functions in peripheral nerve system. Glia 2020; 68:1794-1809. [PMID: 32077526 DOI: 10.1002/glia.23805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Deepak Prasad Gupta
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Imad Al Ghouleh
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alessandro Bisello
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University, Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Torii T, Miyamoto Y, Yamauchi J. Cellular Signal-Regulated Schwann Cell Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:3-22. [PMID: 31760634 DOI: 10.1007/978-981-32-9636-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing studies have demonstrated multiple signaling molecules responsible for oligodendrocytes and Schwann cells development such as migration, differentiation, myelination, and axo-glial interaction. However, complicated roles in these events are still poorly understood. This chapter focuses on well established intracellular signaling transduction and recent topics that control myelination and are elucidated from accumulating evidences. The underlying molecular mechanisms, which involved in membrane trafficking through small GTPase Arf6 and its activator cytohesins, demonstrate the crosstalk between well established intracellular signaling transduction and a new finding signaling pathway in glial cells links to physiological phenotype and essential role in peripheral nerve system (PNS). Since Arf family proteins affect the expression levels of myelin protein zero (MPZ) and Krox20, which is a transcription factor regulatory factor in early developmental stages of Schwann cells, Arf proteins likely to be key regulator for Schwann cells development. Herein, we discuss how intracellular signaling transductions in Schwann cells associate with myelination in CNS and PNS.
Collapse
Affiliation(s)
- Tomohiro Torii
- Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.
| |
Collapse
|
9
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
10
|
aPKC in neuronal differentiation, maturation and function. Neuronal Signal 2019; 3:NS20190019. [PMID: 32269838 PMCID: PMC7104321 DOI: 10.1042/ns20190019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The atypical Protein Kinase Cs (aPKCs)—PRKCI, PRKCZ and PKMζ—form a subfamily within the Protein Kinase C (PKC) family. These kinases are expressed in the nervous system, including during its development and in adulthood. One of the aPKCs, PKMζ, appears to be restricted to the nervous system. aPKCs are known to play a role in a variety of cellular responses such as proliferation, differentiation, polarity, migration, survival and key metabolic functions such as glucose uptake, that are critical for nervous system development and function. Therefore, these kinases have garnered a lot of interest in terms of their functional role in the nervous system. Here we review the expression and function of aPKCs in neural development and in neuronal maturation and function. Despite seemingly paradoxical findings with genetic deletion versus gene silencing approaches, we posit that aPKCs are likely candidates for regulating many important neurodevelopmental and neuronal functions, and may be associated with a number of human neuropsychiatric diseases.
Collapse
|
11
|
Meng X, Maurel P, Lam I, Heffernan C, Stiffler MA, McBeath G, Salzer JL. Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane. Glia 2019; 67:884-895. [PMID: 30585357 PMCID: PMC7138615 DOI: 10.1002/glia.23578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Interactions between axons and Schwann cells are essential for the acquisition of Schwann cell radial and longitudinal polarity and myelin sheath assembly. In the internode, the largest of these longitudinal domains, axon-Schwann cell interactions are mediated by the Nectin-like (Necl) cell adhesion proteins, also known as SynCAMs or Cadms. In particular, Necl-1/Cadm3 expressed on the axon surface binds to Necl-4/Cadm4 expressed along the adaxonal membrane of myelinating Schwann cells. Necl-4 promotes myelination in vitro and is required for the timely onset of myelination and the fidelity of the organization of the myelin sheath and the internode in vivo. A key question is the identity of the downstream effectors of Necl-4 that mediate its effects. The cytoplasmic terminal region (CTR) of Necl-4 contains a PDZ-domain binding motif. Accordingly, we used the CTR of Necl-4 in an unbiased proteomic screen of PDZ-domain proteins. We identify Par-3, a multi-PDZ domain containing protein of the Par-aPKC polarity complex previously implicated in myelination, as an interacting protein. Necl-4 and Par-3 are colocalized along the inner Schwann cell membrane and coprecipitate from Schwann cell lysates. The CTR of Necl-4 binds to the first PDZ domain of Par-3 thereby recruiting Par-3 to sites of Necl-4/Necl-1 interaction. Knockdown of Necl-4 perturbs Par-3 localization to the inner membrane of Schwann cells in myelinating co-cultures. These findings implicate interactions of Necl-1/Necl-4 in the recruitment of Par-3 to the Schwann cell adaxonal membrane and the establishment of Schwann cell radial polarity.
Collapse
Affiliation(s)
- Xiaosong Meng
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers, Newark, NJ
07102
| | - Isabel Lam
- Dana-Faber Cancer Institute, Boston, MA 02215
| | - Corey Heffernan
- Department of Biological Sciences, Rutgers, Newark, NJ
07102
| | | | - Gavin McBeath
- Department of Systems Biology, Harvard Medical School,
Boston, MA 02115
| | - James L. Salzer
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
| |
Collapse
|
12
|
Terada N, Saitoh Y, Kamijo A, Yamauchi J, Ohno N, Sakamoto T. Structures and Molecular Composition of Schmidt-Lanterman Incisures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:181-198. [PMID: 31760645 DOI: 10.1007/978-981-32-9636-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schmidt-Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.1G-membrane protein palmitoylated 6 (MPP6)-cell adhesion molecule 4 (CADM4). 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. Motor activity and myelin ultrastructures were abnormal in 4.1G-deficient mice, indicating the 4.1G function as a signal for proper formation of myelin in PNS. Thus, SLI probably has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cell myelin formation.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan.
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Takeharu Sakamoto
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
13
|
Beirowski B. The LKB1-AMPK and mTORC1 Metabolic Signaling Networks in Schwann Cells Control Axon Integrity and Myelination: Assembling and upholding nerves by metabolic signaling in Schwann cells. Bioessays 2018; 41:e1800075. [PMID: 30537168 DOI: 10.1002/bies.201800075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/03/2018] [Indexed: 01/10/2023]
Abstract
The Liver kinase B1 with its downstream target AMP activated protein kinase (LKB1-AMPK), and the key nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) form two signaling systems that coordinate metabolic and cellular activity with changes in the environment in order to preserve homeostasis. For example, nutritional fluctuations rapidly feed back on these signaling systems and thereby affect cell-specific functions. Recent studies have started to reveal important roles of these strategic metabolic regulators in Schwann cells for the trophic support and myelination of axons. Because aberrant intermediate metabolism along with mitochondrial dysfunction in Schwann cells is mechanistically linked to nerve abnormalities found in acquired and inherited peripheral neuropathies, manipulation of the LKB1-AMPK, and mTORC1 signaling hubs may be a worthwhile therapeutic target to mitigate nerve damage in disease. Here, recent advances in our understanding of LKB1-AMPK and mTORC1 functions in Schwann cells are covered, and future research areas for this key metabolic signaling network are proposed.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
14
|
The membrane palmitoylated protein, MPP6, is involved in myelin formation in the mouse peripheral nervous system. Histochem Cell Biol 2018; 151:385-394. [PMID: 30357511 DOI: 10.1007/s00418-018-1745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
A membrane skeletal molecular complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6)-Lin7-cell adhesion molecule 4 (CADM4), is incorporated in Schwann cells, especially in Schmidt-Lanterman incisures (SLIs), in the mouse peripheral nervous system (PNS). MPP6, Lin7, and CADM4 are transported to SLIs by 4.1G. In this study, we created MPP6-deficient mice and evaluated myelin structure and MPP6 protein complexes. In SLIs in MPP6-deficient nerves, Lin7 was rarely detected by immunohistochemistry and western blotting, but the localization and amount of CADM4 and 4.1G were not altered. Motor activity was not significantly impaired in a tail-suspension test, but the sciatic nerves of MPP6-deficient mice had thicker myelin in internodes by electron microscopy compared to that of wild-type mice. These results indicate that the MPP6-Lin7 complex regulates myelin formation.
Collapse
|
15
|
Tricaud N. Myelinating Schwann Cell Polarity and Mechanically-Driven Myelin Sheath Elongation. Front Cell Neurosci 2018; 11:414. [PMID: 29354031 PMCID: PMC5760505 DOI: 10.3389/fncel.2017.00414] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Myelin sheath geometry, encompassing myelin sheath thickness relative to internodal length, is critical to optimize nerve conduction velocity and these parameters are carefully adjusted by the myelinating cells in mammals. In the central nervous system these adjustments could regulate neuronal activities while in the peripheral nervous system they lead to the optimization and the reliability of the nerve conduction velocity. However, the physiological and cellular mechanisms that underlie myelin sheath geometry regulation are not yet fully elucidated. In peripheral nerves the myelinating Schwann cell uses several molecular mechanisms to reach and maintain the correct myelin sheath geometry, such that myelin sheath thickness and internodal length are regulated independently. One of these mechanisms is the epithelial-like cell polarization process that occurs during the early phases of the myelin biogenesis. Epithelial cell polarization factors are known to control cell size and morphology in invertebrates and mammals making these processes critical in the organogenesis. Correlative data indicate that internodal length is regulated by postnatal body growth that elongates peripheral nerves in mammals. In addition, the mechanical stretching of peripheral nerves in adult animals shows that myelin sheath length can be increased by mechanical cues. Recent results describe the important role of YAP/TAZ co-transcription factors during Schwann cell myelination and their functions have linked to the mechanotransduction through the HIPPO pathway and the epithelial polarity factor Crb3. In this review the molecular mechanisms that govern mechanically-driven myelin sheath elongation and how a Schwann cell can modulate internodal myelin sheath length, independent of internodal thickness, will be discussed regarding these recent data. In addition, the potential relevance of these mechanosensitive mechanisms in peripheral pathologies will be highlighted.
Collapse
Affiliation(s)
- Nicolas Tricaud
- Institut National de la Santé et de la Recherche Médicale, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system. Histochem Cell Biol 2017; 148:597-606. [PMID: 28755316 DOI: 10.1007/s00418-017-1600-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G-/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G-/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G-/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G-/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.
Collapse
|
17
|
Terada N, Saitoh Y, Kamijo A, Ohno S, Ohno N. Involvement of membrane skeletal molecules in the Schmidt-Lanterman incisure in Schwann cells. Med Mol Morphol 2015; 49:5-10. [PMID: 26541343 DOI: 10.1007/s00795-015-0125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
Membrane skeletal networks form a two-dimensional lattice structure beneath erythrocyte membranes. 4.1R-MPP (membrane palmitoylated protein) 1-glycophorin C is one of the basic molecular complexes of the membrane skeleton. An analogous molecular complex, 4.1G-MPP6-cell adhesion molecule 4 (CADM4), is incorporated into the Schmidt-Lanterman incisure (SLI), a truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system. In this review, the dynamic structure of peripheral nerve fibers under stretching conditions is demonstrated using in vivo cryotechnique. The structures of nerve fibers had a beaded appearance, and the heights of SLI circular-truncated cones increased at the narrow sites of nerve fibers under the stretched condition. The height of SLI-truncated cones was lower in 4.1G-deficient nerve fibers than in wild-type nerve fibers. 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. The signal transduction protein, Src, was also involved in the 4.1G-MPP6-CADM4 molecular complex. The phosphorylation of Src was altered by the deletion of 4.1G. Thus, we herein demonstrate a membrane skeletal molecular complex in SLI that has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cells.
Collapse
Affiliation(s)
- Nobuo Terada
- Division of Health Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| | - Akio Kamijo
- Division of Health Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| |
Collapse
|