1
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|
2
|
Grassi D, Plonka FB, Oksdath M, Guil AN, Sosa LJ, Quiroga S. Selected SNARE proteins are essential for the polarized membrane insertion of igf-1 receptor and the regulation of initial axonal outgrowth in neurons. Cell Discov 2015; 1:15023. [PMID: 27462422 PMCID: PMC4860833 DOI: 10.1038/celldisc.2015.23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 02/08/2023] Open
Abstract
The establishment of polarity necessitates initial axonal outgrowth and,
therefore, the addition of new membrane to the axon’s plasmalemma.
Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles
(PPVs) primarily at the neuronal growth cone. Little is known about the SNAREs
family proteins involved in the regulation of PPV fusion with the neuronal
plasmalemma at early stages of differentiation. We show here that five SNARE
proteins (VAMP2, VAMP4, VAMP7, Syntaxin6 and SNAP23) were expressed by
hippocampal pyramidal neurons before polarization. Expression silencing of three
of these proteins (VAMP4, Syntaxin6 and SNAP23) repressed axonal outgrowth and
the establishment of neuronal polarity, by inhibiting IGF-1 receptor exocytotic
polarized insertion, necessary for neuronal polarization. In addition,
stimulation with IGF-1 triggered the association of VAMP4, Syntaxin6 and SNAP23
to vesicular structures carrying the IGF-1 receptor and overexpression of a
negative dominant form of Syntaxin6 significantly inhibited exocytosis of IGF-1
receptor containing vesicles at the neuronal growth cone. Taken together, our
results indicated that VAMP4, Syntaxin6 and SNAP23 functions are essential for
regulation of PPV exocytosis and the polarized insertion of IGF-1 receptor and,
therefore, required for initial axonal elongation and the establishment of
neuronal polarity.
Collapse
Affiliation(s)
- Diego Grassi
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| | - Florentyna Bustos Plonka
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| | - Mariana Oksdath
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| | - Alvaro Nieto Guil
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| | - Lucas J Sosa
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| |
Collapse
|
3
|
Dupraz S, Grassi D, Karnas D, Nieto Guil AF, Hicks D, Quiroga S. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons. PLoS One 2013; 8:e54462. [PMID: 23349896 PMCID: PMC3548777 DOI: 10.1371/journal.pone.0054462] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal regeneration following trauma.
Collapse
Affiliation(s)
- Sebastián Dupraz
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Diego Grassi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Diana Karnas
- Rhythms, Life and Death in the Retina, Centre National de la Recherche Scientifique (CNRS) UPR-3212 Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Alvaro F. Nieto Guil
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - David Hicks
- Rhythms, Life and Death in the Retina, Centre National de la Recherche Scientifique (CNRS) UPR-3212 Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Santiago Quiroga
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
4
|
Gonzalez-Billault C, Muñoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Caceres A. The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 2012; 69:464-85. [PMID: 22605667 DOI: 10.1002/cm.21034] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.
Collapse
Affiliation(s)
- Christian Gonzalez-Billault
- Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Department of Biology and Institute for Cell Dynamics and Biotechnology, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
OBJECTIVE This study was designed to investigate the effects of hypoxia on neural process proliferation by studying its effects on growth cone tubulin and insulin-like growth factor (IGF)-I receptor content. METHODS Six fetal lambs were catheterized in the brachial artery and vein. Maternal oxygenation was reduced in steps from a fractional inspired oxygen concentration (FiO2) of 20% to 6% by addition of nitrogen to the inhaled gas mixture for a period of 4 h of reduced oxygen intake. Fetal arterial blood was sampled after the maternal FiO2 and oxygen were stable for >5 min at maternal FiO2 of 20% to 6%. Controls were obtained from normoxic fetuses whose ewes had similar surgery and were kept at an FiO2 of 20% throughout the experiment. Growth cones were isolated from the fetal cerebrum and cerebellum. alpha-tubulin and IGF-I receptors were quantified by immunoblotting. Tubulin and IGF-I receptor mRNA expressions were quantified by real-time polymerase chain reaction. RESULTS Maternal nitrogen breathing reduced fetal arterial pH from 7.32+/-0.06 to 6.99+/-0.02 (p<0.001). Hypoxia increased IGF-I receptors from 143+/-10 to 327+/-14 (p<0.001) and from 272+/-26 to 396+/-34 (p<0.001) fluorescence units/microg protein in the cerebrum and cerebellum, respectively. It also increased alpha-tubulin from 713+/-30 to 1873+/-126 (p<0.001) and from 780+/-34 to 2362+/-79 (p<0.001) fluorescence units/microg protein in the cerebrum and cerebellum, respectively. Expression of IGF-I receptor mRNA increased significantly in the hypoxic animals both in the cerebrum and the cerebellum, but there was no change in expression of alpha-tubulin mRNA. CONCLUSIONS This increase in IGF-I receptor expression and growth cone content may be an adaptive response to hypoxia to maintain neurite growth by facilitating binding of IGF-I. Hypoxia also increased the growth cone level of alpha-tubulin but did not increase its mRNA expression, which may indicate an inability to polymerize tubulin and build microtubules.
Collapse
Affiliation(s)
- B L G Morgan
- Division of Maternal-Fetal, Department of Obstetrics and Gynecology, UCLA Medical Center, Torrance, CA 90509, USA
| | | |
Collapse
|
6
|
Aberrant intracellular IGF-1R β-subunit makes receptor knockout cells (IGF1R-/-) susceptible to oncogenic transformation. Exp Cell Res 2009; 315:1458-67. [DOI: 10.1016/j.yexcr.2009.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 01/12/2023]
|
7
|
Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Cáceres A, Pfenninger KH, Quiroga S. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 2006; 9:993-5. [PMID: 16845384 DOI: 10.1038/nn1742] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/26/2006] [Indexed: 11/09/2022]
Abstract
How a neuron becomes polarized remains largely unknown. Results obtained with a function-blocking antibody and an siRNA targeting the insulin-like growth factor-1 (IGF-1) receptor suggest that an essential step in the establishment of hippocampal neuronal polarity and the initiation of axonal outgrowth is the activation of the phosphatidylinositol 3-kinase (PI3k)-Cdc42 pathway by the IGF-1 receptor, but not by the TrkA or TrkB receptors.
Collapse
Affiliation(s)
- Lucas Sosa
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Barclay DC, Hallbergson AF, Montague JR, Mudd LM. Reversal of ethanol toxicity in embryonic neurons with growth factors and estrogen. Brain Res Bull 2005; 67:459-65. [PMID: 16216694 DOI: 10.1016/j.brainresbull.2005.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/04/2005] [Indexed: 11/25/2022]
Abstract
Prenatal exposure to ethanol is the cause of fetal alcohol syndrome, which is characterized by brain abnormalities and decreased mental capacity. In the current study, cultured neurons from embryonic rat cortices were used to study the reversal of ethanol toxicity on neuronal survival and neurite outgrowth. Ethanol treatment followed by treatment with estrogen and certain growth factors were used to assess the potential of these growth factors and estrogen to reverse the effects of ethanol damage. Cortical neurons from embryonic day (E) 16 rats were grown in defined medium with a glial plane at a distance of 1mm from the neurons. Ethanol (45 mM) was administered on day in vitro 1 (DIV 1) and DIV 4. Insulin-like growth factor-I (IGF-I, 10 ng/ml), insulin-like growth factor-II (IGF-II, 10 ng/ml), basic fibroblast growth factor (bFGF, 5 ng/ml), nerve growth factor (NGF, 100 ng/ml), and estrogen (Es, 10 ng/ml) were administered on DIV 4 and DIV 5. Cell viability was determined on DIV 6 using the intravital dyes fluorescein diacetate and propidium iodide. IGF-I and bFGF reduced ethanol's toxic effect on neuronal survival. Estrogen, bFGF, and NGF increased total neurite length after ethanol treatment. Although none of the treatments had a statistically significant effect on the mean number of primary neurites, all caused a statistically significant increase in the mean number of secondary neurites per cell (a measure of neuritic branching) relative to the ethanol treatment alone.
Collapse
|
9
|
Laurino L, Wang XX, de la Houssaye BA, Sosa L, Dupraz S, Cáceres A, Pfenninger KH, Quiroga S. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J Cell Sci 2005; 118:3653-62. [PMID: 16046480 DOI: 10.1242/jcs.02490] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for axonal outgrowth and is known to occur mainly at the nerve growth cone. We have demonstrated recently that plasmalemmal expansion is regulated at the growth cone by IGF-1, but not by BDNF, in a manner that is quasi independent of the neuron's perikaryon. To begin elucidating the signaling pathway by which exocytosis of the plasmalemmal precursor is regulated, we studied activation of the IRS/PI3K/Akt pathway in isolated growth cones and hippocampal neurons in culture stimulated with IGF-1 or BDNF. Our results show that IGF-1, but not BDNF, significantly and rapidly stimulates IRS/PI3K/Akt and membrane expansion. Inhibition of PI3K with Wortmannin or LY294002 blocked IGF-1-stimulated plasmalemmal expansion at the growth cones of cultured neurons. Finally, our results show that, upon stimulation with IGF-1, most active PI3K becomes associated with distal microtubules in the proximal or central domain of the growth cone. Taken together, our results suggest a critical role for IGF-1 and the IRS/PI3K/Akt pathway in the process of membrane assembly at the axonal growth cone.
Collapse
Affiliation(s)
- Lisandro Laurino
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y CIQUIBIC, CONICET, Córdoba 5000, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosso S, Bollati F, Bisbal M, Peretti D, Sumi T, Nakamura T, Quiroga S, Ferreira A, Cáceres A. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell 2004; 15:3433-49. [PMID: 15090620 PMCID: PMC452595 DOI: 10.1091/mbc.e03-05-0328] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.
Collapse
Affiliation(s)
- Silvana Rosso
- Instituto Investigacion Medica Mercedes y Martin Ferreya-CONICET-Consejo Nacional de Investigaciones Científicas y Técnicas, 5000 Cordoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Insulin-like growth factor-1 (IGF-1) is a naturally occurring neurotrophic factor that plays an important role in promoting cell proliferation and differentiation during normal brain development and maturation. The present review examines recent evidence that endogenous IGF-1 also plays a significant role in recovery from insults such as hypoxia-ischemia and that giving additional exogenous IGF-1 can actively ameliorate damage. It is now well established that neurons and other cell types die many hours or even days after initial injury due to activation of programmed cell death pathways. IGF-1 and its binding proteins and receptors are intensely induced within damaged brain regions following brain injury, suggesting a possible a role for IGF-1 in brain recovery. Exogenous administration of IGF-1 within a few hours after brain injury is now known to be protective in both gray and white matter and leads to improved somatic function. In contrast, pre-treatment is ineffective, likely reflecting limited intracerebral penetration of IGF-1 into the uninjured brain. The neuroprotective effects of IGF-1 are mediated by IGF-1 receptors and its binding proteins and are specific to particular cellular phenotypes and brain regions. The window of opportunity for treatment with IGF-1 is limited to a few hours after normothermic brain injury, reflecting its specific actions on early, intracellular events in the apoptotic cascade. However, injury-associated mild post-hypoxic hypothermia, which delays the development of cell death, can shift and dramatically extend the window of opportunity for delayed treatment with IGF-1. Such a combined approach is likely to be essential for any clinical treatment.
Collapse
Affiliation(s)
- J Guan
- Faculty of Medicine and Health Sciences, The Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
12
|
Pfenninger KH, Laurino L, Peretti D, Wang X, Rosso S, Morfini G, Cáceres A, Quiroga S. Regulation of membrane expansion at the nerve growth cone. J Cell Sci 2003; 116:1209-17. [PMID: 12615964 DOI: 10.1242/jcs.00285] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for neurite extension and is known to occur mainly at the growth cone. This report examines whether this is a regulated event controlled by growth factors. The Golgi complex and nascent PPVs of hippocampal neurons in culture were pulse-labeled with fluorescent ceramide. We studied the dynamics of labeled PPVs upon arrival at the axonal growth cone. In controls and cultures stimulated with brain-derived neurotrophic factor (BDNF), PPV clusters persisted in growth cones with a half-life (t(1/2)) of >14 minutes. Upon challenge with IGF-1, however, fluorescent elements cleared from the growth cones with a t(1/2) of only 6 minutes. Plasmalemmal expansion was measured directly as externalization of membrane glycoconjugates in resealed growth cone particles (GCPs) isolated from fetal forebrain. These assays demonstrated that membrane expansion could be stimulated by IGF-1 in a dose-dependent manner but not by BDNF, even though intact, functional BDNF receptor was present on GCPs. Because both BDNF and IGF-1 are known to enhance neurite growth, but BDNF did not stimulate membrane expansion at the growth cone, we studied the effect of BDNF on the IGF-1 receptor. BDNF was found to cause the translocation of the growth-cone-specific IGF-1 receptor subunit beta(gc) to the distal axon, in a KIF2-dependent manner. We conclude that IGF-1 stimulates axonal assembly at the growth cone, and that this occurs via regulated exocytosis of PPVs. This mechanism is affected by BDNF only indirectly, by regulation of the beta(gc) level at the growth cone.
Collapse
Affiliation(s)
- Karl H Pfenninger
- Department of Cellular and Structural Biology, University of Colorado, School of Medicine and Cancer Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kunda P, Paglini G, Quiroga S, Kosik K, Caceres A. Evidence for the involvement of Tiam1 in axon formation. J Neurosci 2001; 21:2361-72. [PMID: 11264310 PMCID: PMC6762399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2000] [Revised: 12/22/2000] [Accepted: 01/05/2001] [Indexed: 02/19/2023] Open
Abstract
In cultured neurons, axon formation is preceded by the appearance in one of the multiple neurites of a large growth cone containing a labile actin network and abundant dynamic microtubules. The invasion-inducing T-lymphoma and metastasis 1 (Tiam1) protein that functions as a guanosine nucleotide exchange factor for Rac1 localizes to this neurite and its growth cone, where it associates with microtubules. Neurons overexpressing Tiam1 extend several axon-like neurites, whereas suppression of Tiam1 prevents axon formation, with most of the cells failing to undergo changes in growth cone size and in cytoskeletal organization typical of prospective axons. Cytochalasin D reverts this effect leading to multiple axon formation and penetration of microtubules within neuritic tips devoid of actin filaments. Taken together, these results suggest that by regulating growth cone actin organization and allowing microtubule invasion within selected growth cones, Tiam1 promotes axon formation and hence participates in neuronal polarization.
Collapse
Affiliation(s)
- P Kunda
- Instituto Mercedes y Martin Ferreyra (INIMEC-CONICET), 5000 Cordoba, Argentina
| | | | | | | | | |
Collapse
|
14
|
Surchev L. Synaptic membrane morphology in the rat cerebral cortex during development: image analysis of freeze-etching replicas of isolated synapses and synapses in situ. Neurosci Lett 2001; 300:25-8. [PMID: 11172931 DOI: 10.1016/s0304-3940(01)01539-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both synaptic sites in situ from rat cerebral cortex and isolated ones in synaptosomal and growth cone fractions derived from it were studied during postnatal development. Freeze-etching technique and image analysis were used to determine the size of the intramembranous particles in the pre- and postsynaptic sites. At each age investigated, the greatest mean particle size was established on the E-face of the postsynaptic sites and ranges from 6.2 nm (day 0) to nearly 10 nm (day 90). The continuous mean particle size increase from birth to maturity shows the same rate but a different rhythm for the two synaptic sites. The results indicate that fractionation do not disturb the correlation between the particle size and age thus outlining the stability of the developing synaptic membrane morphology to physical treatments.
Collapse
Affiliation(s)
- L Surchev
- Department of Anatomy and Histology, Medical University, BG-1431, Sofia, Bulgaria.
| |
Collapse
|
15
|
Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A. Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles. J Cell Biol 2000; 149:141-52. [PMID: 10747093 PMCID: PMC2175094 DOI: 10.1083/jcb.149.1.141] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this study we present evidence about the cellular functions of KIF4. Using subcellular fractionation techniques and immunoisolation, we have now identified a type of vesicle that associates with KIF4, an NH(2)-terminal globular motor domain kinesin-like protein. This vesicle is highly concentrated in growth cones and contains L1, a cell adhesion molecule implicated in axonal elongation. It lacks synaptic vesicle markers, receptors for neurotrophins, and membrane proteins involved in growth cone guidance. In cultured neurons, KIF4 and L1 predominantly localize to the axonal shaft and its growth cone. Suppression of KIF4 with antisense oligonucleotides results in the accumulation of L1 within the cell body and in its complete disappearance from axonal tips. In addition, KIF4 suppression prevents L1-enhanced axonal elongation. Taken collectively, our results suggest an important role for KIF4 during neuronal development, a phenomenon which may be related to the anterograde transport of L1-containing vesicles.
Collapse
Affiliation(s)
- Diego Peretti
- Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), 5000 Córdoba, Argentina
| | - Leticia Peris
- Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), 5000 Córdoba, Argentina
| | - Silvana Rosso
- Departamento Quimica Biológica, Facultad Ciencias Químicas (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Santiago Quiroga
- Departamento Quimica Biológica, Facultad Ciencias Químicas (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Alfredo Cáceres
- Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), 5000 Córdoba, Argentina
| |
Collapse
|
16
|
Weisenhorn DM, Roback J, Young AN, Wainer BH. Cellular aspects of trophic actions in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:177-265. [PMID: 10333580 DOI: 10.1016/s0074-7696(08)61388-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past three decades the number of molecules exhibiting trophic actions in the brain has increased drastically. These molecules promote and/or control proliferation, differentiation, migration, and survival (sometimes even the death) of their target cells. In this review a comprehensive overview of small diffusible factors showing trophic actions in the central nervous system (CNS) is given. The factors discussed are neurotrophins, epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factors, ciliary neurotrophic factor and related molecules, glial-derived growth factor and related molecules, transforming growth factor-beta and related molecules, neurotransmitters, and hormones. All factors are discussed with respect to their trophic actions, their expression patterns in the brain, and molecular aspects of their receptors and intracellular signaling pathways. It becomes evident that there does not exist "the" trophic factor in the CNS but rather a multitude of them interacting with each other in a complicated network of trophic actions forming and maintaining the adult nervous system.
Collapse
Affiliation(s)
- D M Weisenhorn
- Wesley Woods Laboratory for Brain Science, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
17
|
Paglini G, Pigino G, Kunda P, Morfini G, Maccioni R, Quiroga S, Ferreira A, Cáceres A. Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth. J Neurosci 1998; 18:9858-69. [PMID: 9822744 PMCID: PMC6793278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1998] [Revised: 09/09/1998] [Accepted: 09/11/1998] [Indexed: 02/09/2023] Open
Abstract
Cultures of cerebellar macroneurons were used to study the pattern of expression, subcellular localization, and function of the neuronal cdk5 activator p35 during laminin-enhanced axonal growth. The results obtained indicate that laminin, an extracellular matrix molecule capable of selectively stimulating axonal extension and promoting MAP1B phosphorylation at a proline-directed protein kinase epitope, selectively stimulates p35 expression, increases its association with the subcortical cytoskeleton, and accelerates its redistribution to the axonal growth cones. Besides, suppression of p35, but not of a highly related isoform designated as p39, by antisense oligonucleotide treatment selectively reduces cdk5 activity, laminin-enhanced axonal elongation, and MAP1b phosphorylation. Taken collectively, the present results suggest that cdk5/p35 may serve as an important regulatory linker between environmental signals (e.g., laminin) and constituents of the intracellular machinery (e.g., MAP1B) involved in axonal elongation.
Collapse
Affiliation(s)
- G Paglini
- Instituto Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5000 Cordoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Paglini G, Kunda P, Quiroga S, Kosik K, Cáceres A. Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons. J Cell Biol 1998; 143:443-55. [PMID: 9786954 PMCID: PMC2132841 DOI: 10.1083/jcb.143.2.443] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Revised: 09/10/1998] [Indexed: 01/25/2023] Open
Abstract
In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin-radixin or ezrin-moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin-moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8-10 times slower than the one of growth cones from control neurons. Radixin-moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity.
Collapse
Affiliation(s)
- G Paglini
- Instituto Mercedes y Martin Ferreyra-CONICET, 5000 Cordoba, Argentina
| | | | | | | | | |
Collapse
|
19
|
D'Costa AP, Prevette DM, Houenou LJ, Wang S, Zackenfels K, Rohrer H, Zapf J, Caroni P, Oppenheim RW. Mechanisms of insulin-like growth factor regulation of programmed cell death of developing avian motoneurons. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(19980905)36:3<379::aid-neu6>3.0.co;2-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Sepp-Lorenzino L. Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 1998; 47:235-53. [PMID: 9516079 DOI: 10.1023/a:1005955017615] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factors I and II (IGF-I, IGF-II) were originally identified as potent mitogens and as the mediators of growth hormone action. Besides being mitogenic, however, these polypeptide growth factors play a crucial role in cell survival, and contribute to transformation and to maintenance of the malignant phenotype. Here we will discuss signaling by the IGFs, focusing specifically on the structure and function of the IGF-I receptor and the domains of this receptor responsible for distinct IGF functions: mitogenesis, transformation, and protection from apoptosis. We will also compare the structural domains of the related but functionally distinct receptor for insulin.
Collapse
Affiliation(s)
- L Sepp-Lorenzino
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|