1
|
Noble AR, Masek M, Hofmann C, Cuoco A, Rusterholz TDS, Özkoc H, Greter NR, Phelps IG, Vladimirov N, Kollmorgen S, Stoeckli E, Bachmann-Gagescu R. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system. Biol Open 2024; 13:bio060421. [PMID: 39400299 PMCID: PMC11583916 DOI: 10.1242/bio.060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. To identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genes cc2d2aw38, cep290fh297, inpp5ezh506, talpid3i264 and togaram1zh510 and the Bardet-Biedl syndrome-causative gene bbs1k742. We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain but do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.
Collapse
Affiliation(s)
- Alexandra R Noble
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Claudia Hofmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arianna Cuoco
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Tamara D S Rusterholz
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Hayriye Özkoc
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nadja R Greter
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ian G Phelps
- Department of Pediatrics, University of Washington, Seattle, WA 8057, USA
| | - Nikita Vladimirov
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 98105 Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, 8057 Zurich, Switzerland
| | - Sepp Kollmorgen
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Esther Stoeckli
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Institute for Medical Genetics, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
2
|
Djebar M, Anselme I, Pezeron G, Bardet PL, Cantaut-Belarif Y, Eschstruth A, López-Santos D, Le Ribeuz H, Jenett A, Khoury H, Veziers J, Parmentier C, Hirschler A, Carapito C, Bachmann-Gagescu R, Schneider-Maunoury S, Vesque C. Astrogliosis and neuroinflammation underlie scoliosis upon cilia dysfunction. eLife 2024; 13:RP96831. [PMID: 39388365 PMCID: PMC11466456 DOI: 10.7554/elife.96831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.
Collapse
Affiliation(s)
- Morgane Djebar
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Guillaume Pezeron
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d’Histoire Naturelle, CNRSParisFrance
| | - Pierre-Luc Bardet
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Inserm U 16 1127, CNRS UMR 7225, F-75013ParisFrance
| | - Alexis Eschstruth
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Diego López-Santos
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Hélène Le Ribeuz
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UMS2010 / INRA UMS1451, Université Paris-SaclayParisFrance
| | - Hanane Khoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Joelle Veziers
- Inserm UMR 1229, CHU Nantes PHU4 OTONN, SC3M facility, Inserm UMS 016, CNRS 3556, Université de NantesNantesFrance
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Institut de Biologie Paris Seine (IBPS) – Neurosciences Paris Seine (NPS)ParisFrance
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, 23 Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - 24 FR2048StrasbourgFrance
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, 23 Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - 24 FR2048StrasbourgFrance
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of ZurichZurichSwitzerland
- Institute of Molecular Life Sciences, University of ZurichZurichSwitzerland
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| |
Collapse
|
3
|
López-González L, Martínez-de-la-Torre M, Puelles L. Populational heterogeneity and partial migratory origin of the ventromedial hypothalamic nucleus: genoarchitectonic analysis in the mouse. Brain Struct Funct 2023; 228:537-576. [PMID: 36598560 PMCID: PMC9944059 DOI: 10.1007/s00429-022-02601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/27/2022] [Indexed: 01/05/2023]
Abstract
The ventromedial hypothalamic nucleus (VMH) is one of the most distinctive hypothalamic tuberal structures, subject of numerous classic and modern functional studies. Commonly, the adult VMH has been divided in several portions, attending to differences in cell aggregation, cell type, connectivity, and function. Consensus VMH partitions in the literature comprise the dorsomedial (VMHdm), and ventrolateral (VMHvl) subnuclei, which are separated by an intermediate or central (VMHc) population (topographic names based on the columnar axis). However, some recent transcriptome analyses have identified a higher number of different cell types in the VMH, suggesting additional subdivisions, as well as the possibility of separate origins. We offer a topologic and genoarchitectonic developmental study of the mouse VMH complex using the prosomeric axis as a reference. We analyzed genes labeling specific VMH subpopulations, with particular focus upon the Nkx2.2 transcription factor, a marker of the alar-basal boundary territory of the prosencephalon, from where some cells seem to migrate dorsoventrally into VMH. We also identified separate neuroepithelial origins of a Nr2f1-positive subpopulation, and a new Six3-positive component, as well as subtle differences in origin of Nr5a1 positive versus Nkx2.2-positive cell populations entering dorsoventrally the VMH. Several of these migrating cell types are born in the dorsal tuberal domain and translocate ventralwards to reach the intermediate tuberal domain, where the adult VMH mass is located in the adult. This work provides a more detailed area map on the intrinsic organization of the postmigratory VMH complex, helpful for deeper functional studies of this basal hypothalamic entity.
Collapse
Affiliation(s)
- Lara López-González
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Luis Puelles
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120, Murcia, Spain.
| |
Collapse
|
4
|
Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022; 11:cells11182895. [PMID: 36139475 PMCID: PMC9496791 DOI: 10.3390/cells11182895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.
Collapse
|
5
|
Wiegering A, Dildrop R, Vesque C, Khanna H, Schneider-Maunoury S, Gerhardt C. Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone. Mol Biol Cell 2021; 32:675-689. [PMID: 33625872 PMCID: PMC8108517 DOI: 10.1091/mbc.e20-03-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Hemant Khanna
- Department of Ophthalmology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Guo J, Yang Y, Ji Z, Yao M, Xia X, Sha X, Huang M. Case Report: Novel RPGRIP1L Gene Mutations Identified by Whole Exome Sequencing in a Patient With Multiple Primary Tumors. Front Genet 2021; 12:620472. [PMID: 33597970 PMCID: PMC7882720 DOI: 10.3389/fgene.2021.620472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
A 78 years old Chinese woman with five different cancer types and a family history of malignancy was the subject of this study. Pancreatic adenocarcinoma and gingival squamous cell carcinoma tissues were obtained from the patient and sequenced using Whole Exome Sequencing. Whole exome sequencing identified 20 mutation sites in six candidate genes. Sanger Sequencing was used for further validation. The results verified six mutations in three genes, OBSCN, TTN, and RPGRIP1L, in at least one cancer type. Immunohistochemistry was used to verify protein expression. mRNA expression analysis using The Cancer Genome Atlas database revealed that RPGRIP1L was highly expressed in several cancer types, especially in pancreatic adenocarcinoma, and correlated with patient survival and sensitivity to paclitaxel, probably through the TGF-β signaling pathway. The newly identified somatic mutations in RPGRIP1L might contribute to pathogenesis in the patients. Protein conformation simulation demonstrated that the alterations had caused the binding pocket at position 708 to change from concave to convex, which could restrict contraction and extension, and interfere with the physiological function of the protein. Further studies are required to determine the implication of RPGRIP1L in this family and in multiple primary tumors.
Collapse
Affiliation(s)
- Jiani Guo
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yu Yang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Zhuqing Ji
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Mengchu Yao
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaotian Xia
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaofeng Sha
- Department of Medical Oncology, Huai'an Hongze District People's Hospital, Huai'an, China
| | - Mingde Huang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
7
|
Puelles L, Diaz C, Stühmer T, Ferran JL, Martínez‐de la Torre M, Rubenstein JLR. LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 2021; 529:367-420. [PMID: 32420617 PMCID: PMC7671952 DOI: 10.1002/cne.24952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
We present here a thorough and complete analysis of mouse P0-P140 prethalamic histogenetic subdivisions and corresponding nuclear derivatives, in the context of local tract landmarks. The study used as fundamental material brains from a transgenic mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immunoreaction, and several other ancillary protein or RNA markers, including Calb2 and Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans shell domain, respectively) were mapped across the prethalamus. The resulting model of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdivisions, as well as a tripartite radial stratification, each cell population showing a characteristic molecular profile. Some novel nuclei are proposed, and some instances of potential tangential cell migration were noted.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | - Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | | | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Wells AM, García-Cabezas MÁ, Barbas H. Topological atlas of the hypothalamus in adult rhesus monkey. Brain Struct Funct 2020; 225:1777-1803. [PMID: 32556476 PMCID: PMC7321918 DOI: 10.1007/s00429-020-02093-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/31/2022]
Abstract
The prosomeric model explains the embryological development of the central nervous system (CNS) shared by all vertebrates as a Bauplan. As a primary event, the early neural plate is patterned by intersecting longitudinal plates and transverse segments, forming a mosaic of progenitor units. The hypothalamus is specified by three prosomeres (hp1, hp2, and the acroterminal domain) of the secondary prosencephalon with corresponding alar and basal plate parts, which develop apart from the diencephalon. Mounting evidence suggests that progenitor units within alar and basal plate parts of hp1 and hp2 give rise to distinct hypothalamic nuclei, which preserve their relative invariant positioning (topology) in the adult brain. Nonetheless, the principles of the prosomeric model have not been applied so far to the hypothalamus of adult primates. We parcellated hypothalamic nuclei in adult rhesus monkeys (Macaca mulatta) using various stains to view architectonic boundaries. We then analyzed the topological relations of hypothalamic nuclei and adjacent hypothalamic landmarks with homology across rodent and primate species to trace the origin of adult hypothalamic nuclei to the alar or basal plate components of hp1 and hp2. We generated a novel atlas of the hypothalamus of the adult rhesus monkey with developmental ontologies for each hypothalamic nucleus. The result is a systematic reinterpretation of the adult hypothalamus whose prosomeric ontology can be used to study relationships between the hypothalamus and other regions of the CNS. Further, our atlas may serve as a tool to predict causal patterns in physiological and pathological pathways involving the hypothalamus.
Collapse
Affiliation(s)
- Anne Marie Wells
- Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02215, USA
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA
| | | | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Tirou L, Russo M, Faure H, Pellegrino G, Sharif A, Ruat M. C9C5 positive mature oligodendrocytes are a source of Sonic Hedgehog in the mouse brain. PLoS One 2020; 15:e0229362. [PMID: 32078657 PMCID: PMC7032736 DOI: 10.1371/journal.pone.0229362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the mature rodent brain, Sonic Hedgehog (Shh) signaling regulates stem and progenitor cell maintenance, neuronal and glial circuitry and brain repair. However, the sources and distribution of Shh mediating these effects are still poorly characterized. Here, we report in the adult mouse brain, a broad expression pattern of Shh recognized by the specific monoclonal C9C5 antibody in a subset (11–12%) of CC1+ mature oligodendrocytes that do not express carbonic anhydrase II. These cells express also Olig2 and Sox10, two oligodendrocyte lineage-specific markers, but not PDGFRα, a marker of oligodendrocyte progenitors. In agreement with oligodendroglial cells being a source of Shh in the adult mouse brain, we identify Shh transcripts by single molecule fluorescent in situ hybridization in a subset of cells expressing Olig2 and Sox10 mRNAs. These findings also reveal that Shh expression is more extensive than originally reported. The Shh-C9C5-associated signal labels the oligodendroglial cell body and decorates by intense puncta the processes. C9C5+ cells are distributed in a grid-like manner. They constitute small units that could deliver locally Shh to its receptor Patched expressed in GFAP+ and S100β+ astrocytes, and in HuC/D+ neurons as shown in PtcLacZ/+ reporter mice. Postnatally, C9C5 immunoreactivity overlaps the myelination peak that occurs between P10 and P20 and is down regulated during ageing. Thus, our data suggest that C9C5+CC1+ oligodendroglial cells are a source of Shh in the mouse postnatal brain.
Collapse
Affiliation(s)
- Linda Tirou
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | - Mariagiovanna Russo
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | - Helene Faure
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | - Giuliana Pellegrino
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | | | - Martial Ruat
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
10
|
Portal C, Rompolas P, Lwigale P, Iomini C. Primary cilia deficiency in neural crest cells models anterior segment dysgenesis in mouse. eLife 2019; 8:52423. [PMID: 31845891 PMCID: PMC6946567 DOI: 10.7554/elife.52423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Defects affecting tissues of the anterior segment (AS) of the eye lead to a group of highly debilitating disorders called Anterior Segment Dysgenesis (ASD). Despite the identification of some causative genes, the pathogenesis of ASD remains unclear. Interestingly, several ciliopathies display conditions of the AS. Using conditional targeting of Ift88 with Wnt1-Cre, we show that primary cilia of neural crest cells (NCC), precursors of most AS structures, are indispensable for normal AS development and their ablation leads to ASD conditions including abnormal corneal dimensions, defective iridocorneal angle, reduced anterior chamber volume and corneal neovascularization. Mechanistically, NCC cilia ablation abolishes hedgehog (Hh) signaling in the periocular mesenchyme (POM) canonically activated by choroid-secreted Indian Hh, reduces proliferation of POM cells surrounding the retinal pigment epithelium and decreases the expression of Foxc1 and Pitx2, two transcription factors identified as major ASD causative genes. Thus, we uncovered a signaling axis linking cilia and ASD.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Panteleimos Rompolas
- Department of Dermatology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
11
|
Postel M, Karam A, Pézeron G, Schneider-Maunoury S, Clément F. A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex. BMC Bioinformatics 2019; 20:470. [PMID: 31521111 PMCID: PMC6744691 DOI: 10.1186/s12859-019-3018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. Results A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. Conclusions Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases. Electronic supplementary material The online version of this article (10.1186/s12859-019-3018-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Postel
- Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, LJLL, Paris, France.
| | - Alice Karam
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), Paris, France
| | - Guillaume Pézeron
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), Paris, France.,Current address: Laboratoire Physiologie Moléculaire et Adaptation, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du développement (LBD), Paris, France
| | - Frédérique Clément
- Inria, Université Paris-Saclay, Palaiseau, France.,LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
12
|
Wiegering A, Petzsch P, Köhrer K, Rüther U, Gerhardt C. GLI3 repressor but not GLI3 activator is essential for mouse eye patterning and morphogenesis. Dev Biol 2019; 450:141-154. [PMID: 30953627 DOI: 10.1016/j.ydbio.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Δ699/Δ699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/β-CATENIN signalling.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|