1
|
Blunk S, Garcia-Verdugo H, O’Sullivan S, Camp J, Haines M, Coalter T, Williams TA, Nagy LM. Functional Divergence of the Tribolium castaneum engrailed and invected Paralogs. INSECTS 2023; 14:691. [PMID: 37623401 PMCID: PMC10455198 DOI: 10.3390/insects14080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally, then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results in asegmental larvae. Surprisingly, the knockdown of Oncopeltus inv can result in the loss or fusion of the entire abdomen and en knockdowns in Tribolium show variable degrees of segmental loss. The consequence of losing or knocking down both paralogs on embryogenesis has not been studied beyond Drosophila. To further investigate the relative functions of each paralog and the mechanism behind the segmental loss, Tribolium double and single knockdowns of en and inv were analyzed. The most common cuticular phenotype of the double knockdowns was small, limbless, and open dorsally, with all but a single, segmentally iterated row of bristles. Less severe knockdowns had fused segments and reduced appendages. The Tribolium paralogs appear to act synergistically: the knockdown of either Tribolium gene alone was typically less severe, with all limbs present, whereas the most extreme single knockdowns mimic the most severe double knockdown phenotype. Morphological abnormalities unique to either single gene knockdown were not found. inv expression was not affected in the Tribolium en knockdowns, but hh expression was unexpectedly increased midway through development. Thus, while the segmental expression of en/inv is broadly conserved within insects, the functions of en and inv are evolving independently in different lineages.
Collapse
Affiliation(s)
- Summer Blunk
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Hector Garcia-Verdugo
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Sierra O’Sullivan
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - James Camp
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Michael Haines
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Tara Coalter
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| | - Terri A. Williams
- Biology Department, Trinity College, Hartford, CT 06106, USA (T.A.W.)
| | - Lisa M. Nagy
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA (H.G.-V.); (S.O.)
| |
Collapse
|
2
|
Banerjee TD, Ramos D, Monteiro A. Expression of Multiple engrailed Family Genes in Eyespots of Bicyclus anynana Butterflies Does Not Implicate the Duplication Events in the Evolution of This Morphological Novelty. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Carratala-Marco F, Andreo-Lillo P, Martinez-Morga M, Escamez-Martínez T, Botella-López A, Bueno C, Martinez S. Clinical Phenotypes Associated to Engrailed 2 Gene Alterations in a Series of Neuropediatric Patients. Front Neuroanat 2018; 12:61. [PMID: 30147646 PMCID: PMC6095973 DOI: 10.3389/fnana.2018.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 07/04/2018] [Indexed: 01/10/2023] Open
Abstract
The engrailed homeobox protein (EN) plays an important role in the regionalization of the neural tube. EN distribution regulates the cerebellum and midbrain morphogenesis, as well as retinotectal synaptogenesis. In humans, the EN1 and EN2 genes code for the EN family of transcription factors. Genetic alterations in the expression of EN2 have been related to different neurologic conditions and more particularly to autism spectrum disorders (ASD). We aimed to study and compare the phenotypes of three series of patients: (1) patients with encephalic structural anomalies (ESA) and abnormalities in the genomic (DNA) and/or transcriptomic (RNAm) of EN2 (EN2-g), (2) ESA patients having other gene mutations (OG-g), and (3) ESA patients free of these mutations (NM-g). Subjects and Methods: We have performed a descriptive study on 109 patients who suffer from mental retardation (MR), cerebral palsy (CP), epilepsy (EP), and behavioral disorders (BD), showing also ESA in their encephalic MRI. We studied genomic DNA and transcriptional analysis (cDNA) on EN2 gene (EN2), and in other genes (OG): LIS1, PTAFR, PAFAH1B2, PAFAH1B3, FGF8, PAX2, D17S379, D17S1866, and SMG6 (D17S5), as a routine genetic diagnosis in ESA patients. Results: From 109 patients, fifteen meet the exclusion criteria. From the remaining 94 patients, 12 (12.8%) showed mutations in EN2 (EN2-g), 20 showed mutations in other studied genes (OG-g), and 62 did not showed any mutation (NM-g). All EN2-g patients, suffered from MR, nine EP, seven BD and four CP. The proportions of these phenotypes in EN2-g did not differ from those in the OG-g, but it was significantly higher when comparing EN2-g with NM-g (MR: p = 0.013; EP: p = 0.001; BD: p = 0.0001; CP: p = 0.07, ns). Groups EN2-g and OG-g showed a 100 and a 70% of comorbidity, respectively, being significantly (p = 0.04) greater than NM-group (62.9%). Conclusion: Our series reflects a significant effect of EN2 gene alterations in neurodevelopmental abnormalities associated to ESA. Conversely, although these EN2 related anomalies might represent a predisposition to develop brain diseases, our results did not support direct relationship between EN2 mutations and specific clinical phenotypes.
Collapse
Affiliation(s)
| | | | - Marta Martinez-Morga
- Neuroscience Institute UMH-CSIC, CIBERSAM-ISCIII, Alicante, Spain.,IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | | | | | - Carlos Bueno
- Neuroscience Institute UMH-CSIC, CIBERSAM-ISCIII, Alicante, Spain
| | | |
Collapse
|
4
|
Engrailed homeoproteins in visual system development. Cell Mol Life Sci 2014; 72:1433-45. [PMID: 25432704 PMCID: PMC4366559 DOI: 10.1007/s00018-014-1776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 12/28/2022]
Abstract
Engrailed is a homeoprotein transcription factor. This family of transcription factors is characterized by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and regulate protein translation in addition to gene transcription. Engrailed is intimately involved in the development of the vertebrate visual system. Early expression of Engrailed in dorsal mesencephalon contributes to the development and organization of a visual structure, the optic tectum/superior colliculus. This structure is an important target for retinal ganglion cell axons that carry visual information from the retina. Engrailed regulates the expression of Ephrin axon guidance cues in the tectum/superior colliculus. More recently it has been reported that Engrailed itself acts as an axon guidance cue in synergy with the Ephrin system and is proposed to enhance retinal topographic precision.
Collapse
|
5
|
Pézier A, Blagburn JM. Auditory responses of engrailed and invected-expressing Johnston's Organ neurons in Drosophila melanogaster. PLoS One 2013; 8:e71419. [PMID: 23940751 PMCID: PMC3734059 DOI: 10.1371/journal.pone.0071419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/03/2013] [Indexed: 11/23/2022] Open
Abstract
The roles of the transcription factor Engrailed (En), and its paralogue Invected (Inv), in adult Drosophila Johnston’s Organ sensory neurons are unknown. We used en-GAL4 driven CD8-GFP and antibody staining to characterize these neurons in the pedicel (second antennal segment). The majority of En and Inv-expressing Johnston’s Organ neurons (En-JONs) are located in the ventral part of the posterior group of JONs, with only a few in the medial group. Anatomical classification of En-JON axon projections shows they are mainly type A and E, with a few type B. Extracellular recording of sound-evoked potentials (SEPs) from the antennal nerve was used along with Kir2.1 silencing to assess the contribution that En-JONs make to the auditory response to pure-tone sound stimuli. Silencing En-JONs reduces the SEP amplitude at the onset of the stimulus by about half at 100, 200 and 400 Hz, and also reduces the steady-state response to 200 Hz. En-JONs respond to 82 dB and 92 dB sounds but not 98 dB. Despite their asymmetrical distribution in the Johnston’s Organ they respond equally strongly to both directions of movement of the arista. This implies that individual neurons are excited in both directions, a conclusion supported by reanalysis of the morphology of the pedicel-funicular joint. Other methods of silencing the JONs were also used: RNAi against the voltage-gated Na+ channel encoded by the para gene, expression of attenuated diphtheria toxin, and expression of a modified influenza toxin M2(H37A). Only the latter was found to be more effective than Kir2.1. Three additional JON subsets were characterized using Flylight GAL4 lines. inv-GAL4 88B12 and Gycβ100B-GAL4 12G03 express in different subsets of A group neurons and CG12484-GAL4 91G04 is expressed in B neurons. All three contribute to the auditory response to 200 Hz tones.
Collapse
Affiliation(s)
- Adeline Pézier
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
6
|
Fabre CCG, Casal J, Lawrence PA. Mechanosensilla in the adult abdomen of Drosophila: engrailed and slit help to corral the peripheral sensory axons into segmental bundles. Development 2010; 137:2885-94. [PMID: 20667917 PMCID: PMC2938919 DOI: 10.1242/dev.044552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
The abdomen of adult Drosophila bears mechanosensory bristles with axons that connect directly to the CNS, each hemisegment contributing a separate nerve bundle. Here, we alter the amount of Engrailed protein and manipulate the Hedgehog signalling pathway in clones of cells to study their effects on nerve pathfinding within the peripheral nervous system. We find that high levels of Engrailed make the epidermal cells inhospitable to bristle neurons; sensory axons that are too near these cells are either deflected or fail to extend properly or at all. We then searched for the engrailed-dependent agent responsible for these repellent properties. We found slit to be expressed in the P compartment and, using genetic mosaics, present evidence that Slit is the responsible molecule. Blocking the activity of the three Robo genes (putative receptors for Slit) with RNAi supported this hypothesis. We conclude that, during normal development, gradients of Slit protein repel axons away from compartment boundaries - in consequence, the bristles from each segment send their nerves to the CNS in separated sets.
Collapse
MESH Headings
- Abdomen/physiology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Gene Expression Regulation, Developmental
- Genes, Insect
- Hedgehog Proteins/genetics
- Hedgehog Proteins/physiology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Mechanoreceptors/physiology
- Models, Neurological
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurogenesis/genetics
- Neurogenesis/physiology
- RNA Interference
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Smoothened Receptor
- Transcription Factors/genetics
- Transcription Factors/physiology
- Roundabout Proteins
Collapse
|
7
|
Abstract
The nervous system consists of hundreds of billions of neurons interconnected into the functional neural networks that underlie behaviors. The capacity of a neuron to innervate and function within a network is mediated via specialized cell junctions known as synapses. Synapses are macromolecular structures that regulate intercellular communication in the nervous system, and are the main gatekeepers of information flow within neural networks. Where and when synapses form determines the connectivity and functionality of neural networks. Therefore, our knowledge of how synapse formation is regulated is critical to our understanding of the nervous system and how it goes awry in neurological disorders. Synapse formation involves pairing of the pre- and postsynaptic partners at a specific neurospatial coordinate. The specificity of synapse formation requires the precise execution of multiple developmental events, including cell fate specification, cell migration, axon guidance, dendritic growth, synaptic target selection, and synaptogenesis (Juttner and Rathjen in Cell. Mol. Life Sci. 62:2811, 2005; Salie et al., in Neuron 45:189, 2005; Waites et al., in Annu. Rev. Neurosci. 28:251, 2005). Remarkably, during the development of the vertebrate nervous system, these developmental processes occur almost simultaneously in billions of neurons, resulting in the formation of trillions of synapses. How this remarkable specificity is orchestrated during development is one of the outstanding questions in the field of neurobiology, and the focus of discussion of this chapter. We center the discussion of this chapter on the early developmental events that orchestrate the process of synaptogenesis prior to activity-dependent mechanisms. We have therefore limited the discussion of important activity-dependent synaptogenic events, which are discussed in other chapters of this book. Moreover, our discussion is biased toward lessons we have learned from invertebrate systems, in particular from C. elegans and Drosophila. We did so to complement the discussions from other chapters in this book, which focus on the important findings that have recently emerged from the vertebrate literature. The chapter begins with a brief history of the field of synaptic biology. This serves as a backdrop to introduce some of the historically outstanding questions of synaptic development that have eluded us during the past century, and which are the focus of this review. We then discuss some general features of synaptic structure as it relates to its function. In particular, we will highlight evolutionarily conserved traits shared by all synaptic structures, and how these features have helped optimize these ancient cellular junctions for interneural communication. We then discuss the regulatory signals that orchestrate the precise assembly of these conserved macromolecular structures. This discussion will be framed in the context of the neurodevelopmental process. Specifically, much of our discussion will focus on how the seemingly disparate developmental processes are intimately linked at a molecular level, and how this relationship might be crucial in the developmental orchestration of circuit assembly. We hope that the discussion of the multifunctional cues that direct circuit development provides a conceptual framework into understanding how, with a limited set of signaling molecules, precise neural wiring can be coordinated between synaptic partners.
Collapse
Affiliation(s)
- Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Blagburn JM. Engrailed expression in subsets of adult Drosophila sensory neurons: an enhancer-trap study. INVERTEBRATE NEUROSCIENCE 2008; 8:133-46. [PMID: 18597129 DOI: 10.1007/s10158-008-0074-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/18/2008] [Indexed: 11/25/2022]
Abstract
Engrailed (En) has an important role in neuronal development in vertebrates and invertebrates. In adult Drosophila, although En expression persists throughout adulthood, a detailed description of its expression in sensory neurons has not been made. In this study, en-GAL4 was used to drive UAS-CD8::GFP expression and the projections of sensory neurons were examined with confocal microscopy. En protein expression was confirmed using immunocytochemistry. In the antenna, En is present in subsets of Johnston's organ neurons and of olfactory neurons. En-driven GFP is expressed in axons projecting to 18 identified olfactory glomeruli, originating from basiconic, trichoid and coeloconic sensilla. In most cases both neurons of a sensillum express En. En expression overlaps with that of Acj6, another transcription factor. En-driven GFP is also expressed in a subset of maxillary palp olfactory neurons and in all mechanosensory and gustatory sensilla in the posterior compartment of the labial palps. In the legs and halteres, en-driven GFP is expressed in only a subset of the sensory neurons of different modalities that arise in the posterior compartment. Finally, en-driven GFP is expressed in a single multidendritic sensory neuron in each abdominal segment.
Collapse
Affiliation(s)
- Jonathan M Blagburn
- Institute of Neurobiology and Department of Physiology, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA.
| |
Collapse
|
9
|
Farooqui T. Octopamine-mediated neuromodulation of insect senses. Neurochem Res 2007; 32:1511-29. [PMID: 17484052 DOI: 10.1007/s11064-007-9344-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Octopamine functions as a neuromodulator, neurotransmitter, and neurohormone in insect nervous systems. Octopamine has a prominent role in influencing multiple physiological events: (a) as a neuromodulator, it regulates desensitization of sensory inputs, arousal, initiation, and maintenance of various rhythmic behaviors and complex behaviors such as learning and memory; (b) as a neurotransmitter, it regulates endocrine gland activity; and (c) as a neurohormone, it induces mobilization of lipids and carbohydrates. Octopamine exerts its effects by binding to specific proteins that belong to the superfamily of G protein-coupled receptors and share the structural motif of seven transmembrane domains. The activation of octopamine receptors is coupled with different second messenger pathways depending on species, tissue source, receptor type and cell line used for the expression of cloned receptor. The second messengers include adenosine 3',5'-cyclic monophosphate (cAMP), calcium, diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3). The cAMP activates protein kinase A, calcium and DAG activate protein kinase C, and IP3 mobilizes calcium from intracellular stores. Octopamine-mediated generation of these second messengers is associated with changes in cellular response affecting insect behaviors. The main objective of this review is to discuss significance of octopamine-mediated neuromodulation in insect sensory systems.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 West 12th Ave., Columbus, OH 43210-1220, USA.
| |
Collapse
|
10
|
Peel AD, Telford MJ, Akam M. The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proc Biol Sci 2006; 273:1733-42. [PMID: 16790405 PMCID: PMC1634793 DOI: 10.1098/rspb.2006.3497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum. Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation.
Collapse
Affiliation(s)
- Andrew D Peel
- Laboratory for Development and Evolution, Department of Zoology, University Museum of Zoology, Cambridge, UK.
| | | | | |
Collapse
|
11
|
Nagel S, Kaufmann M, Scherr M, Drexler HG, MacLeod RAF. Activation of HLXB9 by juxtaposition with MYB via formation of t(6;7)(q23;q36) in an AML-M4 cell line (GDM-1). Genes Chromosomes Cancer 2005; 42:170-8. [PMID: 15540222 DOI: 10.1002/gcc.20113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mutation or dysregulation of related homeobox genes occurs in leukemia. Using RT-PCR, we screened members of the EHG family of homeobox genes, comprising EN1 (at 2q14), GBX2 (at 2q36), and EN2, GBX1, and HLXB9 (at 7q36), for dysregulation in acute myeloid leukemia (AML) cell lines indicated by chromosomal breakpoints at these sites. Only one EHG-family gene was expressed, HLXB9, in cell line GDM-1 (AML-M4). Karyotypic analysis of GDM-1 revealed a unique t(6;7)(q23;q35), also present in the patient. Fluorescence in situ hybridization analysis showed chromosomal breakpoints close to the region upstream of HLXB9, at 7q36, a region rearranged in certain AML patients, and at 6q23 upstream of MYB, a gene activated in leukemia. Detailed expression analysis suggested ectopic activation of HLXB9 occurred via juxtaposition with regions upstream of MYB, which was highly expressed in GDM-1. Our data identified a cell line model for a novel leukemic translocation involving MYB with HLXB9, further implicating HLXB9 in leukemogenesis.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 7/genetics
- Cytogenetic Analysis/methods
- Gene Expression Regulation, Neoplastic/genetics
- Genes, myb/physiology
- HL-60 Cells/chemistry
- HL-60 Cells/metabolism
- HeLa Cells/chemistry
- HeLa Cells/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Jurkat Cells/chemistry
- Jurkat Cells/metabolism
- K562 Cells/chemistry
- K562 Cells/metabolism
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/pathology
- Proto-Oncogene Proteins c-myb/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic/genetics
- U937 Cells/chemistry
- U937 Cells/metabolism
Collapse
Affiliation(s)
- Stefan Nagel
- DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
One of the most exciting findings in recent years has been the discovery of RNA interference (RNAi). RNAi is an important system that allows sequence-specific gene silencing through targeted degradation of mRNA by cognate double-stranded RNA (dsRNA). RNAi plays a role in endogenous cellular processes, such as developmental control and heterochromatin formation, and serves as an antiviral defense mechanism. Recent findings suggest that RNAi and related pathways are involved in protecting the genome against instabilities caused by transposons and repetitive sequences. Several rapidly developing RNAi methodologies provide a new approach for elucidation of gene functions. RNAi technology is also currently being evaluated as a potentially useful method to develop highly specific dsRNA-based gene-silencing therapeutics. In this paper, we review the use of RNAi in neuroscience research and as a possible therapeutic tool for treatment of neurological diseases.
Collapse
Affiliation(s)
- Sermin Genc
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey.
| | | | | |
Collapse
|
13
|
Abstract
Synaptic specificity is the culmination of several processes, beginning with the establishment of neuronal subtype identity, followed by navigation of the axon to the correct subdivision of neuropil, and finally, the cell-cell recognition of appropriate synaptic partners. In this review we summarize the work on sensory neurons in crickets, cockroaches, moths, and fruit flies that establishes some of the principles and molecular mechanisms involved in the control of synaptic specificity. The identity of a sensory neuron is controlled by combinatorial expression of transcription factors, the products of patterning and proneural genes. In the nervous system, sensory axon projections are anatomically segregated according to modality, stimulus quality, and cell-body position. A variety of cell-surface and intracellular signaling molecules are used to achieve this. Synaptic target recognition is also controlled by transcription factors such as Engrailed and may be, in part, mediated by cadherin-like molecules.
Collapse
Affiliation(s)
- Jonathan M Blagburn
- Institute of Neurobiology, Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00901-1123.
| | | |
Collapse
|