1
|
Abcouwer SF, Miglioranza Scavuzzi B, Kish PE, Kong D, Shanmugam S, Le XA, Yao J, Hager H, Zacks DN. The mouse retinal pigment epithelium mounts an innate immune defense response following retinal detachment. J Neuroinflammation 2024; 21:74. [PMID: 38528525 PMCID: PMC10964713 DOI: 10.1186/s12974-024-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Xuan An Le
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| |
Collapse
|
2
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
3
|
Tan LX, Li J, Germer CJ, Lakkaraju A. Analysis of mitochondrial dynamics and function in the retinal pigment epithelium by high-speed high-resolution live imaging. Front Cell Dev Biol 2022; 10:1044672. [PMID: 36393836 PMCID: PMC9651161 DOI: 10.3389/fcell.2022.1044672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
| | - Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, United States
| | - Colin J. Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
4
|
Liu J, Li Y, Pu Q, Qiu H, Di D, Cao Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int J Biol Macromol 2021; 201:111-120. [PMID: 34968548 DOI: 10.1016/j.ijbiomac.2021.12.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) are beneficial for vision; however, relevant research has mainly focused on entire crude polysaccharides, with the basis and exact structure of the polysaccharide rarely explored. In this study, LICP009-3F-2a, a novel polysaccharide from Lycium barbarum L., was separated and then purified using anion-exchange and size-exclusion chromatography. Structural characteristics were investigated using chemical and spectroscopic methods, which revealed that LICP009-3F-2a has an Mw of 13720 Da and is an acidic heteropolysaccharide composed of rhamnose (39.1%), arabinose (7.4%), galactose (22.5%), glucose (8.3%), galacturonic acid (13.7%), and glucuronic acid (4.0%). Linkage and NMR data revealed that LICP009-3F-2a has the following backbone: →2)-α-L-Rha-(1→2,4)-α-L-Rha- (1→4)-α-D-GalAp-(1→3,6)-β-D-Galp-(1→3,6)-β-D-Galp-(1→6)-β-D-Galp-(1→, with three main branches, including: α-L-Araf-(1→5)-α-L-Araf-(1→6)-β-D-Glcp-(1→2,4)-α-L-Rha-(1→, β-D-Glcp-(1→4)-β-D-Glcp-(1→3,6)-β-D-Galp-(1→, and β-D-Galp-(1→3)-β-D-Galp-(1→3,6) -β-D-Galp-(1→. Differential scanning colorimetry and thermogravimetric analysis showed that LICP009-3F-2a is thermally stable, while X-ray diffractometry showed that LICP009-3F-2a has a semi-crystalline structure. In addition, LICP009-3F-2a protects ARPE-19 cells from H2O2-induced oxidative damage by regulating the expression of antioxidant SOD1 and CAT enzymes and down-regulating MMP2 expression. Moreover, LICP009-3F-2a promotes the proliferation of ARPE-19 cells in a concentration-dependent manner, and protects ARPE-19 cells from hyperglycemia by inhibiting apoptosis.
Collapse
Affiliation(s)
- Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchun Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
5
|
Kobayashi Y, Watanabe S, Ong ALC, Shirai M, Yamashiro C, Ogata T, Higashijima F, Yoshimoto T, Hayano T, Asai Y, Sasai N, Kimura K. Early manifestations and differential gene expression associated with photoreceptor degeneration in Prom1-deficient retina. Dis Model Mech 2021; 14:272527. [PMID: 34664634 PMCID: PMC8628633 DOI: 10.1242/dmm.048962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) and macular dystrophy (MD) are characterized by gradual photoreceptor death in the retina and are often associated with genetic mutations, including those in the prominin-1 (Prom1) gene. Prom1-knockout (KO) mice recapitulate key features of these diseases including light-dependent retinal degeneration and constriction of retinal blood vessels. The mechanisms underlying such degeneration have remained unclear, however. We here analysed early events associated with retinal degeneration in Prom1-KO mice. We found that photoreceptor cell death and glial cell activation occur between 2 and 3 weeks after birth. Whereas gene expression was not affected at 2 weeks, the expression of several genes was altered at 3 weeks in the Prom1-KO retina, with the expression of that for endothelin-2 (Edn2) being markedly upregulated. Expression of Edn2 was also induced by light stimulation in Prom1-KO mice reared in the dark. Treatment with endothelin receptor antagonists attenuated photoreceptor cell death, gliosis and retinal vessel stenosis in Prom1-KO mice. Our findings thus reveal early manifestations of retinal degeneration in a model of RP/MD and suggest potential therapeutic agents for these diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Shizuka Watanabe
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Agnes Lee Chen Ong
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Tadahiko Ogata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Takahide Hayano
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Yoshiyuki Asai
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube 755-0046, Japan
| |
Collapse
|
6
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Chaudhary R, Scott RAH, Wallace G, Berry M, Logan A, Blanch RJ. Inflammatory and Fibrogenic Factors in Proliferative Vitreoretinopathy Development. Transl Vis Sci Technol 2020; 9:23. [PMID: 32742753 PMCID: PMC7357815 DOI: 10.1167/tvst.9.3.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Proliferative vitreoretinopathy (PVR) occurs in 5%-10% of rhegmatogenous retinal detachment cases and is the principle cause for failure of retinal reattachment surgery. Although there are a number of surgical adjunctive agents available for preventing the development of PVR, all have limited efficacy. Discovering predictive molecular biomarkers to determine the probability of PVR development after retinal reattachment surgery will allow better patient stratification for more targeted drug evaluations. Methods Narrative literature review. Results We provide a summary of the inflammatory and fibrogenic factors found in ocular fluid samples during the development of retinal detachment and PVR and discuss their possible use as molecular PVR predictive biomarkers. Conclusions Studies monitoring the levels of the above factors have found that few if any have predictive biomarker value, suggesting that widening the phenotype of potential factors and a combinatorial approach are required to determine predictive biomarkers for PVR. Translational Relevance The identification of relevant biomarkers relies on an understanding of disease signaling pathways derived from basic science research. We discuss the extent to which those molecules identified as biomarkers and predictors of PVR relate to disease pathogenesis and could function as useful disease predictors. (http://www.umin.ac.jp/ctr/ number, UMIN000005604).
Collapse
Affiliation(s)
- Rishika Chaudhary
- Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, UK.,Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Graham Wallace
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Academic Unit of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| |
Collapse
|
8
|
Yan Y, Ren Y, Li X, Zhang X, Guo H, Han Y, Hu J. A polysaccharide from green tea (Camellia sinensis L.) protects human retinal endothelial cells against hydrogen peroxide-induced oxidative injury and apoptosis. Int J Biol Macromol 2018; 115:600-607. [PMID: 29627466 DOI: 10.1016/j.ijbiomac.2018.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 01/09/2023]
Abstract
Oxidative damage of retinal pigment epithelium (RPE) cells is involved in the pathogenesis age related macular degeneration (AMD). The purpose of this study was to evaluate the potential protective effect of a purified green tea polysaccharide (GTWP) against hydrogen peroxide (H2O2) induced oxidative stress and apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Human ARPE-19 cells were treated with 1 h of 500 μM H2O2 before incubation with GTWP for 24 h. Pretreatment of GTWP decreased H2O2-induced cell death and cell apoptosis, and efficiently suppressed the intracellular ROS production and malondialdehyde (MDA) generation induced by H2O2 treatment. Moreover, a loss of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) activities were restored to normal level in H2O2-induced ARPE-19 cells upon GTWP (100 μg/ml) exposure. Also, the tendency of increased protein expression of Bax and cleaved-caspsae-3, as well as decrease of Bcl-2 protein in ARPE-19 cells challenged with H2O2 was changed to individual opposite way, thus inhibiting the apoptotic cell death. Our results demonstrated that GTWP protected RPE cells against oxidative injury through activation of anti-apoptotic and endogenous antioxidant enzymes signaling pathway, suggesting GTWP has attractive therapeutic potential to AMD.
Collapse
Affiliation(s)
- Yitao Yan
- Department of Ophthalmology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Yanfan Ren
- Department of Ophthalmology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Xinmin Li
- Department of Ophthalmology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Xinxia Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Huiqing Guo
- Department of Ophthalmology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Yutong Han
- Department of Ophthalmology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Junxi Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.
| |
Collapse
|
9
|
Rapid monocyte infiltration following retinal detachment is dependent on non-canonical IL6 signaling through gp130. J Neuroinflammation 2017. [PMID: 28645275 PMCID: PMC5481880 DOI: 10.1186/s12974-017-0886-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Retinal detachment (RD) can lead to proliferative vitreoretinopathy (PVR), a leading cause of intractable vision loss. PVR is associated with a cytokine storm involving common proinflammatory molecules like IL6, but little is known about the source and downstream signaling of IL6 and the consequences for the retina. Here, we investigated the early immune response and resultant cytokine signaling following RD in mice. METHODS RD was induced in C57BL/6 J and IL6 knockout mice, and the resulting inflammatory response was examined using immunohistochemistry and flow cytometry. Cytokines and signaling proteins of vitreous and retinas were quantified by multiple cytokine arrays and Western blotting. To attempt to block IL6 signaling, a neutralizing antibody of IL6 receptor α (IL6Rα) or IL6 receptor β (gp-130) was injected intravitreally immediately after RD. RESULTS Within one day of RD, bone marrow-derived Cd11b + monocytes had extravasated from the vasculature and lined the vitreal surface of the retina, while the microglia, the resident macrophages of the retina, were relatively unperturbed. Cytokine arrays and Western blot analysis revealed that this sterile inflammation did not cause activation of IL6 signaling in the neurosensory retina, but rather only in the vitreous and aqueous humor. Monocyte infiltration was inhibited by blocking gp130, but not by IL6 knockout or IL6Rα blockade. CONCLUSIONS Together, our results demonstrate that monocytes are the primary immune cell mediating the cytokine storm following RD, and that any resulting retinal damage is unlikely to be a direct result of retinal IL6 signaling, but rather gp130-mediated signaling in the monocytes themselves. These results suggest that RD should be treated immediately, and that gp130-directed therapies may prevent PVR and promote retinal healing.
Collapse
|
10
|
Järgen P, Dietrich A, Herling AW, Hammes HP, Wohlfart P. The role of insulin resistance in experimental diabetic retinopathy-Genetic and molecular aspects. PLoS One 2017; 12:e0178658. [PMID: 28575111 PMCID: PMC5456117 DOI: 10.1371/journal.pone.0178658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is characterized by defects in the retinal neurovascular unit. The underlying mechanisms of impairment-including reactive intermediates and growth-factor dependent signalling pathways and their possible interplay are incompletely understood. This study aims to assess the relative role of hyperglycemia and hyperinsulinemia alone or in combination on the gene expression patterning in the retina of animal models of diabetes. MATERIAL AND METHODS As insulinopenic, hyperglycemic model reflecting type 1 diabetes, male STZ-Wistar rats (60mg/kg BW; i.p. injection at life age week 7) were used. Male obese ZDF rats (fa/fa) were used as type-2 diabetes model characterized by persisting hyperglycemia and transient hyperinsulinemia. Male obese ZF rats (fa/fa) were used reflecting euglycemia and severe insulin resistance. All groups were kept till an age of 20 weeks on respective conditions together with appropriate age-matched controls. Unbiased gene expression analysis was performed per group using Affymetrix gene arrays. Bioinformatics analysis included analysis for clustering and differential gene expression, and pathway and upstream activator analysis. Gene expression differences were confirmed by microfluidic card PCR technology. RESULTS The most complex genetic regulation in the retina was observed in ZDF rats with a strong overlap to STZ-Wistar rats. Surprisingly, systemic insulin resistance alone in ZF rats without concomitant hyperglycemia did not induce any significant change in retinal gene expression pattern. Pathway analysis indicate an overlap between ZDF rats and STZ-treated rats in pathways like complement system activation, acute phase response signalling, and oncostatin-M signalling. Major array gene expression changes could be confirmed by subsequent PCR. An analysis of upstream transcriptional regulators revealed interferon-γ, interleukin-6 and oncostatin-M in STZ and ZDF rats. CONCLUSIONS: Systemic hyperinsulinaemia without hyperglycemia does not result in significant gene expression changes in retina. In contrast, persistent systemic hyperglycemia boosts much stronger expression changes with a limited number of known and new key regulators.
Collapse
Affiliation(s)
- Patrick Järgen
- 5 Medical Department, Universitätsmedizin Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Axel Dietrich
- Sanofi Aventis Deutschland GmbH, R&D Lead Generation Candidate Realization, Structure, Design and Informatics, Industriepark Höchst, Frankfurt, Germany
| | - Andreas W. Herling
- Sanofi Aventis Deutschland GmbH, TA Diabetes R&D, Industriepark Höchst, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5 Medical Department, Universitätsmedizin Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi Aventis Deutschland GmbH, TA Diabetes R&D, Industriepark Höchst, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
11
|
Grigoryan EN, Markitantova YV. Cellular and Molecular Preconditions for Retinal Pigment Epithelium (RPE) Natural Reprogramming during Retinal Regeneration in Urodela. Biomedicines 2016; 4:E28. [PMID: 28536395 PMCID: PMC5344269 DOI: 10.3390/biomedicines4040028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 12/25/2022] Open
Abstract
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems. In particular, the first problem is to reveal the intrinsic properties of the cells that are necessary and sufficient for reprogramming; the second, to evaluate these properties and, on this basis, to reveal potential endogenous sources for cell substitution in damaged tissues; and the third, to use the acquired data for developing approaches to in vitro cell reprogramming in order to obtain a cell reserve for damaged tissue repair. Normal cells of the retinal pigment epithelium (RPE) in newts (Urodela) can change their specialization and transform into retinal neurons and ganglion cells (i.e., actualize their retinogenic potential). Therefore, they can serve as a model that provides the possibility to identify factors of the initial competence of vertebrate cells for reprogramming in vivo. This review deals mainly with the endogenous properties of native newt RPE cells themselves and, to a lesser extent, with exogenous mechanisms regulating the process of reprogramming, which are actively discussed.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Yuliya V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
12
|
Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration. Mol Vis 2016; 22:472-90. [PMID: 27217715 PMCID: PMC4872275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. METHODS RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. RESULTS Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining detected the increased presence of macrophages and microglia in RCS(sham) retinas, which decreased in RCS(hNPCs) retinas similar to the patterns detected in LE(sham). CONCLUSIONS The results from this study provide evidence of the gene expression changes that occur following treatment with hNPCs in the degenerating retina. This information can be used in future studies to potentially enhance or predict responses to hNPC and other stem cell therapies for retinal degenerative diseases.
Collapse
|
13
|
Huang C, Wang JJ, Jing G, Li J, Jin C, Yu Q, Falkowski MW, Zhang SX. Erp29 Attenuates Cigarette Smoke Extract-Induced Endoplasmic Reticulum Stress and Mitigates Tight Junction Damage in Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016; 56:6196-207. [PMID: 26431474 DOI: 10.1167/iovs.15-16795] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Endoplasmic reticulum protein 29 (ERp29) is a novel chaperone that was recently found decreased in human retinas with AMD. Herein, we examined the effect of ERp29 on cigarette smoke-induced RPE apoptosis and tight junction disruption. METHODS Cultured human RPE (HRPE) cells (ARPE-19) or mouse RPE eyecup explants were exposed to cigarette smoke extract (CSE) for short (up to 24 hours) or long (up to 3 weeks) periods. Expression of ERp29 was up- and downregulated by adenovirus and siRNA, respectively. Endoplasmic reticulum stress markers, apoptosis, and cell death, the expression and distribution of tight junction protein ZO-1, transepithelial electrical resistance (TEER), and F-actin expression were examined. RESULTS Endoplasmic reticulum protein 29 was significantly increased by short-term exposure to CSE in ARPE-19 cells or eyecup explants but was reduced after 3-week exposure. Overexpression of ERp29 increased the levels of GRP78, p58(IPK), and Nrf-2, while reducing p-eIF2α and C/EBP homologous protein (CHOP), and protected RPE cells from CSE-induced apoptosis. In contrast, knockdown of ERp29 decreased the levels of p58(IPK) and Nrf2, but increased p-eIF2α and CHOP and exacerbated CSE-triggered cell death. In addition, overexpression of ERp29 attenuated CSE-induced reduction in ZO-1 and enhanced the RPE barrier function, as measured by TEER. Knockdown of ERp29 decreased the level of ZO-1 protein. These effects were associated with changes in the expression of cytoskeleton F-actin. CONCLUSIONS Endoplasmic reticulum protein 29 attenuates CSE-induced ER stress and enhances cell viability and barrier integrity of RPE cells, and therefore may act as a protective mechanism for RPE survival and activity.
Collapse
Affiliation(s)
- Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China 2Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United
| | - Joshua J Wang
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States 3SUNY Eye Institute, State University of New York, Buffalo, New York, United States 4Department of Med
| | - Guangjun Jing
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Junhua Li
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States 3SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Marek W Falkowski
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States 3SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| |
Collapse
|
14
|
Wang Y, Zhang D, Liu Y, Wang D, Liu J, Ji B. The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:936-944. [PMID: 24909670 DOI: 10.1002/jsfa.6765] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/29/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Studies have shown that anthocyanins (ACNs) in berries contribute to eye health. However, information on the relationship between the chemical structures and visual functions of ACNs is scarce. This study investigated the protection effects of ACNs with different structures against visible light-induced damage in human retinal pigment epithelial (RPE) cells. RESULTS Four ACNs with different aglycones, namely, pelargonidin-3-glucoside (Pg-3-glu), cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, and malvidin-3-glucoside (Mv-3-glu), were isolated from three berries (blueberry, blackberry and strawberry). Of these ACNs, Cy-3-glu exhibited the highest reactive oxygen species inhibitory capacity in RPE cells, with 40 µg mL(-1) Cy-3-glu showing a ROS clearance of 57.5% ± 4.2%. The expression of vascular endothelial growth factor levels were significantly (P < 0.05) down-regulated by Cy-3-glu and Mv-3-glu in a visible light-induced damage RPE cell model. Cy-3-glu and Pg-3-glu treatments significantly (P < 0.05) inhibited the increase in β-galactosidase during the RPE cell ageing caused by visible light exposure. CONCLUSION Our findings suggest that the biological properties of different ACNs significantly vary. Cy-3-glu, which contains an ortho hydroxyl group in its B ring, possibly exerts multiple protective effects (antioxidant, anti-angiogenic and anti-ageing) in RPE cells. Therefore, Cy-3-glu may prove useful as a prophylactic health food for the prevention of retinal diseases.
Collapse
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Grigoryan EN. Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015010045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lyzogubov VV, Bora NS, Tytarenko RG, Bora PS. Polyethylene glycol induced mouse model of retinal degeneration. Exp Eye Res 2014; 127:143-52. [PMID: 25088354 DOI: 10.1016/j.exer.2014.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/15/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness. This study was done to characterize dry AMD-like changes in mouse retinal pigment epithelium (RPE) and retina after polyethylene glycol (PEG) treatment. We injected male C57BL/6 mice subretinally with PBS, 0.025, 0.25, 0.5 and 1.0 mg of PEG-400 and the animals were sacrificed on day 5. Eyes were harvested and processed for histological analysis. In all other experiments 0.5 mg PEG was injected and animals were sacrificed on days 1, 3, 5 or 14. Paraffin, 5 μm and plastic, 1 μm and 80 nm sections were used for further analysis. Subretinal injection of 0.5 mg PEG induced a 32% reduction of outer nuclear layer (ONL) thickness, 61% decrease of photoreceptor outer and inner segment length, 49% decrease of nuclear density in the ONL and 31% increase of RPE cell density by day 5 after injection. The maximum level of TUNEL positive nuclei in the ONL (6.8 + 1.99%) was detected at day 5 after PEG injection and co-localized with Casp3act. Histological signs of apoptosis were observed in the ONL by light or electron microscopy. Degeneration of RPE cells was found in PEG injected eyes. Gene expression data identified several genes reported to be involved in human AMD. C3, Cfi, Serping1, Mmp9, Htra1 and Lpl were up-regulated in PEG injected eyes compared to PBS controls. PEG leads to morphological and gene expression changes in RPE and retina consistent with dry AMD. This model will be useful to investigate dry AMD pathogenesis and treatment.
Collapse
Affiliation(s)
- Valeriy V Lyzogubov
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nalini S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ruslana G Tytarenko
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Puran S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
17
|
Docosahexaenoic acid aggravates photooxidative damage in retinal pigment epithelial cells via lipid peroxidation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:85-93. [PMID: 25108204 DOI: 10.1016/j.jphotobiol.2014.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3), a long-chain polyunsaturated fatty acid (PUFA) with important functions in normal human retinal activity and vision development, is recommended to promote brain and eye development. However, recent research has revealed that increased DHA level in the retina due to linoleic acid-rich diet heightens the vulnerability of the retina to photooxidative stress. Thus, many scholars have analyzed the potential risks of DHA intake on retinal damage. This study evaluated the potential adverse effects of DHA intake on individuals usually exposed to high-light intensity conditions using a visible light-induced retinal pigment epithelium (RPE) cell damage model in vitro. Results showed that DHA promoted the proliferation of RPE cells without any cytotoxicity under dark conditions. However, DHA supplement elicited deleterious effects on RPE cells under high-intensity light conditions. That is, DHA supplement inhibited cellular proliferation, destroyed cell membrane integrity, enhanced cellular senescence, increased vascular endothelial growth factor (VEGF) release, and decreased phagocytic function. Moreover, DHA supplement increased the intracellular and extracellular levels of reactive oxygen species and the extracellular level of lipid peroxidation products under high-intensity light conditions. These results demonstrate that DHA increases the vulnerability of the retina to light damage through lipid peroxidation.
Collapse
|
18
|
Masuda T, Wahlin K, Wan J, Hu J, Maruotti J, Yang X, Iacovelli J, Wolkow N, Kist R, Dunaief JL, Qian J, Zack DJ, Esumi N. Transcription factor SOX9 plays a key role in the regulation of visual cycle gene expression in the retinal pigment epithelium. J Biol Chem 2014; 289:12908-21. [PMID: 24634209 DOI: 10.1074/jbc.m114.556738] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) performs specialized functions to support retinal photoreceptors, including regeneration of the visual chromophore. Enzymes and carrier proteins in the visual cycle function sequentially to regenerate and continuously supply 11-cis-retinal to retinal photoreceptor cells. However, it is unknown how the expression of the visual cycle genes is coordinated at the transcriptional level. Here, we show that the proximal upstream regions of six visual cycle genes contain chromatin-accessible sex-determining region Y box (SOX) binding sites, that SOX9 and LIM homeobox 2 (LHX2) are coexpressed in the nuclei of mature RPE cells, and that SOX9 acts synergistically with orthodenticle homeobox 2 (OTX2) to activate the RPE65 and retinaldehyde binding protein 1 (RLBP1) promoters and acts synergistically with LHX2 to activate the retinal G protein-coupled receptor (RGR) promoter. ChIP reveals that SOX9 and OTX2 bind to the promoter regions of RPE65, RLBP1, and RGR and that LHX2 binds to those of RPE65 and RGR in bovine RPE. ChIP with human fetal RPE cells shows that SOX9 and OTX2 also bind to the human RPE65, RLBP1, and RGR promoters. Conditional inactivation of Sox9 in mouse RPE results in reduced expression of several visual cycle genes, most dramatically Rpe65 and Rgr. Furthermore, bioinformatic analysis predicts that multiple common microRNAs (miRNAs) regulate visual cycle genes, and cotransfection of miRNA mimics with luciferase reporter constructs validated some of the predicted miRNAs. These results implicate SOX9 as a key regulator of visual cycle genes, reveal for the first time the functional role of LHX2 in the RPE, and suggest the possible regulation of visual cycle genes by common miRNAs.
Collapse
Affiliation(s)
- Tomohiro Masuda
- From the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang L, Ma P, Collery R, Trowbridge S, Zhang M, Zhong W, Leung YF. Expression profiling of the RPE in zebrafish smarca4 mutant revealed altered signals that potentially affect RPE and retinal differentiation. Mol Vis 2014; 20:56-72. [PMID: 24426776 PMCID: PMC3888495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/02/2014] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The purpose of this study was to develop a framework for analyzing retinal pigment epithelium (RPE) expression profiles from zebrafish eye mutants. METHODS The fish model we used was SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (smarca4), a retinal dystrophic mutant with a previously described retinal phenotype and expression profiles. Histological and Affymetrix GeneChip analyses were conducted to characterize the RPE defects and underlying differential expression, respectively. RESULTS Histological analysis revealed that smarca4 RPE was formed, but its differentiation was abnormal. In particular, ultrastructural analysis of smarca4 RPE by transmission electron microscopy demonstrated several defects in melanogenesis. The nature of these defects also suggests that the cytoskeletal dynamics, which are tightly linked with melanogenesis, were impaired in smarca4 RPE. To compare the expression profile of normal wild-type (WT) and smarca4 RPE, the gene expression profiles of microdissected retinas and RPE-attached retinas were measured with Affymetrix GeneChip analysis. The RPE expression values were then estimated from these samples by subtracting the retinal expression values from the expression values of the RPE-attached retinas. A factorial analysis was conducted using the expression values of the RPE, retinal, and whole-embryo samples. Specific rules (contrasts) were built using the coefficients of the resulting fitted models to select for three groups of genes: 1) smarca4-regulated RPE genes, 2) smarca4-regulated retinal genes, and 3) smarca4-regulated RPE genes that are not differentially expressed in the retina. Interestingly, the third group consists of 39 genes that are highly related to cytoskeletal dynamics, melanogenesis, and paracrine and intracellular signal transduction. CONCLUSIONS Our analytical framework provides an experimental approach to identify differentially-regulated genes in the retina and the RPE of zebrafish mutants in which both of these tissues are affected by the underlying mutation. Specifically, we have used the method to identify a group of 39 genes that can potentially explain the melanogenesis defect in the smarca4 RPE. In addition, several genes in this group are secreted signaling molecules. Thus, this observation further implicates that the smarca4 RPE might play a role in the retinal dystrophic phenotype in smarca4.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA
| | - Ross Collery
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Sara Trowbridge
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, Athens, GA
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, IN,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, IN
| |
Collapse
|
20
|
Lee WH, Joshi P, Wen R. Glutathione S-transferase pi isoform (GSTP1) expression in murine retina increases with developmental maturity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:23-30. [PMID: 24664677 PMCID: PMC4115804 DOI: 10.1007/978-1-4614-3209-8_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2009). We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to ultraviolet (UV) light, and GSTP1 over-expression protects them against UV light damage (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2010). In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. METHODS Eyes from BALB/c mice at postnatal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lx of white fluorescent light for 24 h, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. RESULTS GSTP1 levels in the murine retina increased in ascending order from postnatal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at postnatal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. CONCLUSIONS GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina.
Collapse
Affiliation(s)
- Wen-Hsiang Lee
- Corresponding Author: Wen-Hsiang Lee, M.D., Ph.D., Assistant Professor of Clinical Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, Phone: 305-326-6323,
| | | | | |
Collapse
|
21
|
Maeda T, Lee MJ, Palczewska G, Marsili S, Tesar PJ, Palczewski K, Takahashi M, Maeda A. Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo. J Biol Chem 2013; 288:34484-93. [PMID: 24129572 DOI: 10.1074/jbc.m113.518571] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat(-/-) and Rpe65(-/-) mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat(-/-) and Rpe65(-/-) mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases.
Collapse
Affiliation(s)
- Tadao Maeda
- From the Departments of Ophthalmology and Visual Sciences
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang J, Zhang N, Beuve A, Townes-Anderson E. Mislocalized opsin and cAMP signaling: a mechanism for sprouting by rod cells in retinal degeneration. Invest Ophthalmol Vis Sci 2012; 53:6355-69. [PMID: 22899763 DOI: 10.1167/iovs.12-10180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE In human retinal degeneration, rod photoreceptors reactively sprout neurites. The mechanism is unknown in part because of the paucity of animal models displaying this feature of human pathology. We tested the role of cAMP and opsin in sprouting by tiger salamander rod cells, photoreceptors that can produce reactive growth. METHODS In vitro systems of isolated photoreceptor cells and intact neural retina were used. cAMP signaling was manipulated with nucleotide analogues, enzyme stimulators, agonists for adenosine and dopamine receptors, and the opsin agonist, β-ionone. Levels of cAMP were determined by radioimmunoassay, and protein levels by Western blot and quantitative immunocytochemistry. Neuritic growth was assayed by image analysis and conventional and confocal microscopy. RESULTS cAMP analogues and stimulation of adenylyl cyclase (AC) directly or through G-protein-coupled receptors resulted in significant increases in neuritic growth of isolated rod, but not cone, cells. The signaling pathway included protein kinase A (PKA) and phosphorylation of the transcription factor cAMP response element-binding protein (pCREB). Opsin, a G-linked receptor, is present throughout the plasmalemma of isolated cells; its activation also induced sprouting. In neural retina, rod sprouting was significantly increased by β-ionone with concomitant increases in cAMP, pCREB, and synaptic proteins. Notably, opsin stimulated sprouting only when mislocalized to the plasmalemma of the rod cell body. CONCLUSIONS cAMP causes neuritic sprouting in rod, but not cone, cells through the AC-PKA-CREB pathway known to be associated with synaptic plasticity. We propose that in retinal disease, mislocalized rod opsin gains access to cAMP signaling, which leads to neuritic sprouting.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Neurology and Neuroscience, New Jersey Medical School–University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
23
|
Zhong Y, Li J, Wang JJ, Chen C, Tran JTA, Saadi A, Yu Q, Le YZ, Mandal MNA, Anderson RE, Zhang SX. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLoS One 2012; 7:e38616. [PMID: 22715395 PMCID: PMC3371004 DOI: 10.1371/journal.pone.0038616] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 05/07/2012] [Indexed: 11/23/2022] Open
Abstract
Damage to the retinal pigment epithelium (RPE) is an early event in the pathogenesis of age-related macular degeneration (AMD). X-box binding protein 1 (XBP1) is a key transcription factor that regulates endoplasmic reticulum (ER) homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.
Collapse
Affiliation(s)
- Yimin Zhong
- Department of Medicine, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center at University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingming Li
- Department of Medicine, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center at University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Joshua J. Wang
- Department of Medicine, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center at University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Chen Chen
- Department of Medicine, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center at University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Julie-Thu A. Tran
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Anisse Saadi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yun-zheng Le
- Department of Medicine, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center at University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Md Nawajes A. Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Robert E. Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sarah X. Zhang
- Department of Medicine, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center at University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Oklahoma Center for Neuroscience, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
24
|
Chucair-Elliott AJ, Elliott MH, Wang J, Moiseyev GP, Ma JX, Politi LE, Rotstein NP, Akira S, Uematsu S, Ash JD. Leukemia inhibitory factor coordinates the down-regulation of the visual cycle in the retina and retinal-pigmented epithelium. J Biol Chem 2012; 287:24092-102. [PMID: 22645143 DOI: 10.1074/jbc.m112.378240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF), an interleukin-6 family neurocytokine, is up-regulated in response to different types of retinal stress and has neuroprotective activity through activation of the gp130 receptor/STAT3 pathway. We observed that LIF induces rapid, robust, and sustained activation of STAT3 in both the retina and retinal pigmented epithelium (RPE). Here, we tested whether LIF-induced STAT3 activation within the RPE can down-regulate RPE65, the central enzyme in the visual cycle that provides the 11-cis-retinal chromophore to photoreceptors in vivo. We generated conditional knock-out mice to specifically delete STAT3 or gp130 in RPE, retina, or both RPE and retina. After intravitreal injection of LIF, we analyzed the expression levels of visual cycle genes and proteins, isomerase activity of RPE65, levels of rhodopsin protein, and the rates of dark adaptation and rhodopsin regeneration. We found that RPE65 protein levels and isomerase activity were reduced and recovery of bleachable rhodopsin was delayed in LIF-injected eyes. In mice with functional gp130/STAT3 signaling in the retina, rhodopsin protein was also reduced by LIF. However, the LIF-induced down-regulation of RPE65 required a functional gp130/STAT3 cascade intrinsic to RPE. Our data demonstrate that a single cytokine, LIF, can simultaneously and independently affect both RPE and photoreceptors through the same signaling cascade to reduce the generation and utilization of 11-cis-retinal.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pelzel HR, Nickells RW. A role for epigenetic changes in the development of retinal neurodegenerative conditions. J Ocul Biol Dis Infor 2012; 4:104-10. [PMID: 23515137 DOI: 10.1007/s12177-012-9079-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/05/2012] [Indexed: 11/25/2022] Open
Affiliation(s)
- Heather R Pelzel
- Department of Biology, University of Wisconsin-Whitewater, 800 W Main St, Whitewater, WI 53190 USA
| | | |
Collapse
|
26
|
Blueberry anthocyanins: protection against ageing and light-induced damage in retinal pigment epithelial cells. Br J Nutr 2011; 108:16-27. [PMID: 22018225 DOI: 10.1017/s000711451100523x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal pigment epithelium (RPE) cells are vital for retinal health. However, they are susceptible to injury with ageing and exposure to excessive light, including UV (100-380 nm) and visible (380-760 nm) radiation. To evaluate the protective effect of blueberry anthocyanins on RPE cells, in vitro cell models of replicative senescent and light-induced damage were established in the present study. After purification and fractionation, blueberry anthocyanin extracts (BAE) were yielded with total anthocyanin contents of 31·0 (SD 0·5) % and were used in this study. Replicative senescence of RPE cells was induced by repeatedly passaging cells from the fourth passage to the tenth. From the fifth passage, cultured RPE cells began to enter a replicative senescence, exhibiting reduced cell proliferation along with an increase in the number of β-galactosidase-positive cells. RPE cells maintained high cell viability (P < 0·01) and a low (P < 0·01) percentage of β-galactosidase-positive cells when treated with 0·1 μg/ml BAE. In contrast, after exposure to 2500 (SD 500) lx light (420-800 nm) for 12 h, RPE cells in the positive control (light exposure, no BAE treatment) exhibited premature senescence, low (P < 0·01) cell viability and increased (P < 0·01) vascular endothelial growth factor (VEGF) release compared with negative control cells, which were not subjected to light irradiation and BAE exposure. Correspondingly, BAE is beneficial to RPE cells by protecting these cells against light-induced damage through the suppression of ageing and apoptosis as well as the down-regulation of the over-expressed VEGF to normal level. These results demonstrate that BAE is efficacious against senescence and light-induced damage of RPE cells.
Collapse
|
27
|
Affiliation(s)
- Chen Zhao
- Nanjing Medical University, First Affiliated Hospital, Nanjing, 210029, China
| | | |
Collapse
|
28
|
Zhao C, Yasumura D, Li X, Matthes M, Lloyd M, Nielsen G, Ahern K, Snyder M, Bok D, Dunaief JL, LaVail MM, Vollrath D. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 2010; 121:369-83. [PMID: 21135502 DOI: 10.1172/jci44303] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/22/2010] [Indexed: 01/28/2023] Open
Abstract
Retinal pigment epithelial (RPE) cell dysfunction plays a central role in various retinal degenerative diseases, but knowledge is limited regarding the pathways responsible for adult RPE stress responses in vivo. RPE mitochondrial dysfunction has been implicated in the pathogenesis of several forms of retinal degeneration. Here we have shown that postnatal ablation of RPE mitochondrial oxidative phosphorylation in mice triggers gradual epithelium dedifferentiation, typified by reduction of RPE-characteristic proteins and cellular hypertrophy. The electrical response of the retina to light decreased and photoreceptors eventually degenerated. Abnormal RPE cell behavior was associated with increased glycolysis and activation of, and dependence upon, the hepatocyte growth factor/met proto-oncogene pathway. RPE dedifferentiation and hypertrophy arose through stimulation of the AKT/mammalian target of rapamycin (AKT/mTOR) pathway. Administration of an oxidant to wild-type mice also caused RPE dedifferentiation and mTOR activation. Importantly, treatment with the mTOR inhibitor rapamycin blunted key aspects of dedifferentiation and preserved photoreceptor function for both insults. These results reveal an in vivo response of the mature RPE to diverse stressors that prolongs RPE cell survival at the expense of epithelial attributes and photoreceptor function. Our findings provide a rationale for mTOR pathway inhibition as a therapeutic strategy for retinal degenerative diseases involving RPE stress.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Expression and distribution of the class III ubiquitin-conjugating enzymes in the retina. Mol Vis 2010; 16:2425-37. [PMID: 21139979 PMCID: PMC2994761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/13/2010] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Mounting evidence implicates chronic oxidative stress as a significant pathogenic factor in the development and progression of retinopathies, including age-related macular degeneration (AMD). The age-dependent toxic accumulation of oxidatively damaged proteins, lipids, and DNA in susceptible cells of the retina arises, at least in part, from a decreased capacity to eliminate these damaged biomolecules. The goal of this study was to determine the expression patterns and function of class III ubiquitin-conjugating enzymes (UbcM3, UBE2E2, and UbcM2) in the retina. These enzymes have been implicated in the ubiquitin-dependent degradation of oxidatively damaged and misfolded proteins. METHODS Complementary western blotting and immunohistochemistry was performed with specific antibodies to determine the retinal cell expression pattern of each enzyme. Additional analyses using antibodies raised against UbcM2 were performed to determine the relative levels of the enzyme in lysates derived from various mouse organs as compared to the retina. An established light-damage model of oxidative stress-induced retinal degeneration was used to determine alterations in the susceptibility of mice harboring a single intact allele of UbcM2. Ubiquitin charging and auto-ubiquitylation assays were done to assess the catalytic state of UbcM2 following photo-oxidative stress. RESULTS Expression of the class III ubiquitin-conjugating enzymes in the retina, from highest to lowest, is UbcM2>UbcM3>UBE2E2. In addition to being the most robustly expressed, UbcM2 is further distinguished by its expression in photoreceptors and retinal pigment epithelial cells. UbcM2 is expressed in most mouse tissues analyzed and is most abundant in the retina. Studies using a bright-light-damage model of acute oxidative stress in mice harboring a single disrupted allele of UbcM2 revealed that a 58% reduction in enzyme levels did not increase the susceptibility of photoreceptors to acute photo-oxidative toxicity. This result may be explained by the observation that UbcM2 retained an intact and functional active site following exposure to acute bright light. CONCLUSIONS The class III ubiquitin-conjugating enzymes, and in particular UbcM2, are expressed in the retina and may function to counter the accumulation of oxidatively damaged and misfolded proteins. A 58% reduction in UbcM2 does not increase the susceptibility of photoreceptors to an acute photo-oxidative stress, suggesting the existence of compensating enzymes and/or that the remaining UbcM2 activity is sufficient to target oxidatively damaged proteins for destruction.
Collapse
|
30
|
Abstract
The ability of light to enact damage on the neurosensory retina and underlying structures has been well understood for hundreds of years. While the eye has adapted several mechanisms to protect itself from such damage, certain exposures to light can still result in temporal or permanent damage. Both clinical observations and laboratory studies have enabled us to understand the various ways by which the eye can protect itself from such damage. Light or electromagnetic radiation can result in damage through photothermal, photomechanical, and photochemical mechanisms. The following review seeks to describe these various processes of injury and many of the variables, which can mitigate these modes of injury.
Collapse
Affiliation(s)
- P N Youssef
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Science, Madison, WI 53792, USA.
| | | | | |
Collapse
|
31
|
POD nanoparticles expressing GDNF provide structural and functional rescue of light-induced retinal degeneration in an adult mouse. Mol Ther 2010; 18:1917-26. [PMID: 20700110 DOI: 10.1038/mt.2010.167] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peptide for ocular delivery (POD) is a novel cationic cell-penetrating peptide (CPP) which, when conjugated with polyethylene glycol (PEG-POD), can deliver plasmid DNA to the retinal pigment epithelium (RPE) of adult murine retina. PEG-POD nanoparticles containing an expression cassette for glial cell line-derived neurotrophic factor (PEG-POD~GDNF) were investigated for their ability to inhibit light-induced photoreceptor apoptosis. PEG-POD~GDNF, control nanoparticles, or buffer were injected into the subretinal space of adult murine retina and retinal degeneration induced by blue light. Animals injected with PEG-POD~GDNF showed a significant reduction (3.9-7.7 fold) in apoptosis relative to control-injected animals. The thickness of the outer nuclear layer (ONL) of the superior retina of PEG-POD~GDNF-injected eyes was significantly greater (23.6-39.3%) than control-injected retina 14 days post-light treatment. PEG-POD~GDNF-injected eyes showed a 27-39% greater functional response relative to controls, as measured by electroretinogram (ERG) 7 days post-light treatment. This is one of only two studies demonstrating histological and functional rescue of a mouse model of retinal degeneration following nonviral administration of a transgene into adult retina. Although rescue is short lived for clinical application, this study represents an important step in the development of nonviral gene therapy for retinal diseases.
Collapse
|
32
|
Chuang JZ, Chou SY, Sung CH. Chloride intracellular channel 4 is critical for the epithelial morphogenesis of RPE cells and retinal attachment. Mol Biol Cell 2010; 21:3017-28. [PMID: 20610659 PMCID: PMC2929995 DOI: 10.1091/mbc.e09-10-0907] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A plasmid-based transfection method was used to cell-autonomously silence chloride intracellular channel 4 (CLIC4) in RPE in situ. These results show CLIC4 is critical for epithelial morphogenesis and retinal attachment. Novel candidate targets for retinal detachment therapy have also been identified. Retinal detachment is a sight-threatening condition. The molecular mechanism underlying the adhesion between the RPE and photoreceptors is poorly understood because the intimate interactions between these two cell types are impossible to model and study in vitro. In this article, we show that chloride intracellular channel 4 (CLIC4) is enriched at apical RPE microvilli, which are interdigitated with the photoreceptor outer segment. We used a novel plasmid-based transfection method to cell-autonomously suppress CLIC4 in RPE in situ. CLIC4 silenced RPE cells exhibited a significant loss of apical microvilli and basal infoldings, reduced retinal adhesion, and epithelial-mesenchymal transition. Ectopically expressing ezrin failed to rescue the morphological changes exerted by CLIC4 silencing. Neural retinas adjacent to the CLIC4-suppressed RPE cells display severe dysplasia. Finally, a high level of aquaporin 1 unexpectedly appeared at the apical surfaces of CLIC4-suppressed RPE cells, together with a concomitant loss of basal surface expression of monocarboxylate transporter MCT3. Our results suggested that CLIC4 plays an important role in RPE-photoreceptor adhesion, perhaps by modulating the activity of cell surface channels/transporters. We propose that these changes may be attributable to subretinal fluid accumulation in our novel retinal detachment animal model.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
33
|
Gallagher-Colombo S, Maminishkis A, Tate S, Grunwald GB, Philp NJ. Modulation of MCT3 expression during wound healing of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2010; 51:5343-50. [PMID: 20505202 DOI: 10.1167/iovs.09-5028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE MCT3 is a proton-coupled monocarboxylate transporter preferentially expressed in the basolateral membrane of the retinal pigment epithelium (RPE) and has been shown to play an important role in regulating pH and lactate concentrations in the outer retina. Decreased expression of MCT3 in response to trauma or disease could contribute to pathologic changes in the retina. The present study followed the expression of MCT3 after wounding and re-epithelialization of chick RPE explant and human fetal (hf) RPE cultures. METHODS Immunofluorescence microscopy and immunoblotting were performed to determine changes in MCT expression after scratch wounding and re-epithelialization of chick RPE/choroid explant cultures and hfRPE cell monolayers. RESULTS MCT3 expression and basolateral polarity were maintained in chick RPE/choroid explant cultures and hfRPE monolayers. Wounding resulted in loss of MCT3 and the upregulation of MCT4 expression in migrating cells at the edge of the wound. On re-epithelialization, MCT3 was detected in chick and hfRPE cells when cells became hexagonally packed and pigmented. However, in hfRPE cells, MCT4 was consistently expressed throughout the epithelial monolayer. RPE cells at the edges of chick explants and hfRPE cultures with a free edge expressed MCT4 but not MCT3. CONCLUSIONS Wounding of RPE monolayers resulted in dedifferentiation of the cells at the edge of the wound, as evidenced by a loss of MCT3 and increased MCT4 expression. Collectively, these findings suggest that both cell-cell and cell-substrate interactions are essential in directing and maintaining differentiation of the RPE and expression of MCT3.
Collapse
Affiliation(s)
- Shannon Gallagher-Colombo
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
34
|
Sweigard JH, Cashman SM, Kumar-Singh R. Adenovirus vectors targeting distinct cell types in the retina. Invest Ophthalmol Vis Sci 2009; 51:2219-28. [PMID: 19892875 DOI: 10.1167/iovs.09-4367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5DeltaRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5DeltaRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5DeltaRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5DeltaRGD vectors.
Collapse
Affiliation(s)
- J Harry Sweigard
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Preoperative duration of retinal detachment and subretinal immunoreactive endothelin-1: repercussion on logarithmic visual acuity. Graefes Arch Clin Exp Ophthalmol 2009; 248:21-30. [DOI: 10.1007/s00417-009-1196-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 08/30/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022] Open
|
36
|
Sparrow JR, Wu Y, Kim CY, Zhou J. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 2009; 51:247-61. [PMID: 19666736 DOI: 10.1194/jlr.r000687] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The lipid phase of the photoreceptor outer segment membrane is essential to the photon capturing and signaling functions of rhodopsin. Rearrangement of phospholipids in the bilayer accompanies the formation of the active intermediates of rhodopsin following photon absorption. Furthermore, evidence for the formation of a condensation product between the photolyzed chromophore all-trans-retinal and phosphatidylethanolamine indicates that phospholipid may also participate in the movement of the retinoid in the membrane. The downside of these interactions is the formation of bisretinoid-phosphatidylethanolamine compounds that accumulate in retinal pigment epithelial cells with age and that are particularly abundant in some retinal disorders. The propensity of these compounds to negatively impact on the cells has been linked to the pathogenesis of some retinal disorders including juvenile onset recessive Stargardt disease and age-related macular degeneration.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
37
|
Preconditioning-induced protection from oxidative injury is mediated by leukemia inhibitory factor receptor (LIFR) and its ligands in the retina. Neurobiol Dis 2009; 34:535-44. [PMID: 19344761 DOI: 10.1016/j.nbd.2009.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 11/21/2022] Open
Abstract
Preconditioning with moderate oxidative stress (e.g., moderate bright light or mild hypoxia) can induce changes in retinal tissue that protect photoreceptors from a subsequent dose of lethal oxidative stress. The mechanism underlying this induced protection is likely a general mechanism of endogenous protection which has been demonstrated in heart and brain using ischemia and reperfusion. While multiple factors like bFGF, CNTF, LIF and BDNF have been hypothesized to play a role in preconditioning-induced endogenous neuroprotection, it has not yet been demonstrated which factors or receptors are playing an essential role. Using quantitative PCR techniques we provide evidence that in the retina, LIFR activating cytokines leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1) and cardiotrophin like cytokine (CLC) are strongly upregulated in response to preconditioning with bright cyclic light leading to robust activation of signal transducer and activator of transcription-3 (STAT3) in a time-dependent manner. Further, we found that blocking LIFR activation during preconditioning using a LIFR antagonist (LIF05) attenuated the induced STAT3 activation and also resulted in reduced preconditioning-induced protection of the retinal photoreceptors. These data demonstrate that LIFR and its ligands play an essential role in endogenous neuroprotective mechanisms triggered by preconditioning-induced stress.
Collapse
|