1
|
Páscoa dos Santos F, Verschure PFMJ. Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics. PLoS Comput Biol 2025; 21:e1012723. [PMID: 39761317 PMCID: PMC11737862 DOI: 10.1371/journal.pcbi.1012723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2024] [Revised: 01/16/2025] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics. Using the Wilson-Cowan model, we explore how distinct modes of E-I homeostasis maintain stable firing rates in models with varying levels of input and how it affects circuit dynamics. Our results confirm that E-I homeostasis can be leveraged to control edge-of-bifurcation dynamics and that some modes of homeostasis maintain mean firing rates under higher levels of input by modulating the distance to the bifurcation. Additionally, relying on multiple modes of homeostasis ensures stable activity while keeping oscillation frequencies within a physiological range. Our findings tie relevant features of cortical networks, such as E-I balance, the generation of gamma oscillations, and edge-of-bifurcation dynamics, under the framework of firing-rate homeostasis, providing a mechanistic explanation for the heterogeneity in the distance to the bifurcation found across cortical areas. In addition, we reveal the functional benefits of relying upon different homeostatic mechanisms, providing a robust method to regulate network dynamics with minimal perturbation to the generation of gamma rhythms and explaining the correlation between inhibition and gamma frequencies found in cortical networks.
Collapse
Affiliation(s)
- Francisco Páscoa dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paul F. M. J. Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Sanchez-Rodriguez LM, Khan AF, Adewale Q, Bezgin G, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Jiang H, Chai X, Carbonell F, Rosa-Neto P, Iturria-Medina Y. In-vivo neuronal dysfunction by Aβ and tau overlaps with brain-wide inflammatory mechanisms in Alzheimer's disease. Front Aging Neurosci 2024; 16:1383163. [PMID: 38966801 PMCID: PMC11223503 DOI: 10.3389/fnagi.2024.1383163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024] Open
Abstract
The molecular mechanisms underlying neuronal dysfunction in Alzheimer's disease (AD) remain uncharacterized. Here, we identify genes, molecular pathways and cellular components associated with whole-brain dysregulation caused by amyloid-beta (Aβ) and tau deposits in the living human brain. We obtained in-vivo resting-state functional MRI (rs-fMRI), Aβ- and tau-PET for 47 cognitively unimpaired and 16 AD participants from the Translational Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts by Aβ and tau were quantified with personalized dynamical models by fitting pathology-mediated computational signals to the participant's real rs-fMRIs. Then, we detected robust brain-wide associations between the spatial profiles of Aβ-tau impacts and gene expression in the neurotypical transcriptome (Allen Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal dysfunction, several genes have prominent roles in microglial activation and in interactions with Aβ and tau. Moreover, cellular vulnerability estimations revealed strong association of microglial expression patterns with Aβ and tau's synergistic impact on neuronal activity (q < 0.001). These results further support the central role of the immune system and neuroinflammatory pathways in AD pathogenesis. Neuronal dysregulation by AD pathologies also associated with neurotypical synaptic and developmental processes. In addition, we identified drug candidates from the vast LINCS library to halt or reduce the observed Aβ-tau effects on neuronal activity. Top-ranked pharmacological interventions target inflammatory, cancer and cardiovascular pathways, including specific medications undergoing clinical evaluation in AD. Our findings, based on the examination of molecular-pathological-functional interactions in humans, may accelerate the process of bringing effective therapies into clinical practice.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Ahmed F. Khan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Hongxiu Jiang
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| |
Collapse
|
3
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer's disease. Commun Biol 2024; 7:528. [PMID: 38704445 PMCID: PMC11069569 DOI: 10.1038/s42003-024-06217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, CA, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
4
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Revealing the combined roles of Aβ and tau in Alzheimer's disease via a pathophysiological activity decoder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529377. [PMID: 37502947 PMCID: PMC10370127 DOI: 10.1101/2023.02.21.529377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/29/2023]
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants ( N = 132 ) . Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Cecile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | | | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| |
Collapse
|
5
|
Kamaleddin MA. Degeneracy in the nervous system: from neuronal excitability to neural coding. Bioessays 2021; 44:e2100148. [PMID: 34791666 DOI: 10.1002/bies.202100148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023]
Abstract
Degeneracy is ubiquitous across biological systems where structurally different elements can yield a similar outcome. Degeneracy is of particular interest in neuroscience too. On the one hand, degeneracy confers robustness to the nervous system and facilitates evolvability: Different elements provide a backup plan for the system in response to any perturbation or disturbance. On the other, a difficulty in the treatment of some neurological disorders such as chronic pain is explained in light of different elements all of which contribute to the pathological behavior of the system. Under these circumstances, targeting a specific element is ineffective because other elements can compensate for this modulation. Understanding degeneracy in the physiological context explains its beneficial role in the robustness of neural circuits. Likewise, understanding degeneracy in the pathological context opens new avenues of discovery to find more effective therapies.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Niemeyer N, Schleimer JH, Schreiber S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr Opin Neurobiol 2021; 70:81-88. [PMID: 34454303 DOI: 10.1016/j.conb.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
In view of ever-changing conditions both in the external world and in intrinsic brain states, maintaining the robustness of computations poses a challenge, adequate solutions to which we are only beginning to understand. At the level of cell-intrinsic properties, biophysical models of neurons permit one to identify relevant physiological substrates that can serve as regulators of neuronal excitability and to test how feedback loops can stabilize crucial variables such as long-term calcium levels and firing rates. Mathematical theory has also revealed a rich set of complementary computational properties arising from distinct cellular dynamics and even shaping processing at the network level. Here, we provide an overview over recently explored homeostatic mechanisms derived from biophysical models and hypothesize how multiple dynamical characteristics of cells, including their intrinsic neuronal excitability classes, can be stably controlled.
Collapse
Affiliation(s)
- Nelson Niemeyer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Montangie L, Miehl C, Gjorgjieva J. Autonomous emergence of connectivity assemblies via spike triplet interactions. PLoS Comput Biol 2020; 16:e1007835. [PMID: 32384081 PMCID: PMC7239496 DOI: 10.1371/journal.pcbi.1007835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2019] [Revised: 05/20/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
Non-random connectivity can emerge without structured external input driven by activity-dependent mechanisms of synaptic plasticity based on precise spiking patterns. Here we analyze the emergence of global structures in recurrent networks based on a triplet model of spike timing dependent plasticity (STDP), which depends on the interactions of three precisely-timed spikes, and can describe plasticity experiments with varying spike frequency better than the classical pair-based STDP rule. We derive synaptic changes arising from correlations up to third-order and describe them as the sum of structural motifs, which determine how any spike in the network influences a given synaptic connection through possible connectivity paths. This motif expansion framework reveals novel structural motifs under the triplet STDP rule, which support the formation of bidirectional connections and ultimately the spontaneous emergence of global network structure in the form of self-connected groups of neurons, or assemblies. We propose that under triplet STDP assembly structure can emerge without the need for externally patterned inputs or assuming a symmetric pair-based STDP rule common in previous studies. The emergence of non-random network structure under triplet STDP occurs through internally-generated higher-order correlations, which are ubiquitous in natural stimuli and neuronal spiking activity, and important for coding. We further demonstrate how neuromodulatory mechanisms that modulate the shape of the triplet STDP rule or the synaptic transmission function differentially promote structural motifs underlying the emergence of assemblies, and quantify the differences using graph theoretic measures. Emergent non-random connectivity structures in different brain regions are tightly related to specific patterns of neural activity and support diverse brain functions. For instance, self-connected groups of neurons, known as assemblies, have been proposed to represent functional units in brain circuits and can emerge even without patterned external instruction. Here we investigate the emergence of non-random connectivity in recurrent networks using a particular plasticity rule, triplet STDP, which relies on the interaction of spike triplets and can capture higher-order statistical dependencies in neural activity. We derive the evolution of the synaptic strengths in the network and explore the conditions for the self-organization of connectivity into assemblies. We demonstrate key differences of the triplet STDP rule compared to the classical pair-based rule in terms of how assemblies are formed, including the realistic asymmetric shape and influence of novel connectivity motifs on network plasticity driven by higher-order correlations. Assembly formation depends on the specific shape of the STDP window and synaptic transmission function, pointing towards an important role of neuromodulatory signals on formation of intrinsically generated assemblies.
Collapse
Affiliation(s)
- Lisandro Montangie
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Christoph Miehl
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Technical University of Munich, School of Life Sciences, Freising, Germany
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Technical University of Munich, School of Life Sciences, Freising, Germany
- * E-mail:
| |
Collapse
|
8
|
Abstract
Constructing a functioning nervous system requires the precise orchestration of a vast array of mechanical, molecular, and neural-activity-dependent cues. Theoretical models can play a vital role in helping to frame quantitative issues, reveal mathematical commonalities between apparently diverse systems, identify what is and what is not possible in principle, and test the abilities of specific mechanisms to explain the data. This review focuses on the progress that has been made over the last decade in our theoretical understanding of neural development.
Collapse
Affiliation(s)
- Geoffrey J Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
Ghelani T, Sigrist SJ. Coupling the Structural and Functional Assembly of Synaptic Release Sites. Front Neuroanat 2018; 12:81. [PMID: 30386217 PMCID: PMC6198076 DOI: 10.3389/fnana.2018.00081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Information processing in our brains depends on the exact timing of calcium (Ca2+)-activated exocytosis of synaptic vesicles (SVs) from unique release sites embedded within the presynaptic active zones (AZs). While AZ scaffolding proteins obviously provide an efficient environment for release site function, the molecular design creating such release sites had remained unknown for a long time. Recent advances in visualizing the ultrastructure and topology of presynaptic protein architectures have started to elucidate how scaffold proteins establish “nanodomains” that connect voltage-gated Ca2+ channels (VGCCs) physically and functionally with release-ready SVs. Scaffold proteins here seem to operate as “molecular rulers or spacers,” regulating SV-VGCC physical distances within tens of nanometers and, thus, influence the probability and plasticity of SV release. A number of recent studies at Drosophila and mammalian synapses show that the stable positioning of discrete clusters of obligate release factor (M)Unc13 defines the position of SV release sites, and the differential expression of (M)Unc13 isoforms at synapses can regulate SV-VGCC coupling. We here review the organization of matured AZ scaffolds concerning their intrinsic organization and role for release site formation. Moreover, we also discuss insights into the developmental sequence of AZ assembly, which often entails a tightening between VGCCs and SV release sites. The findings discussed here are retrieved from vertebrate and invertebrate preparations and include a spectrum of methods ranging from cell biology, super-resolution light and electron microscopy to biophysical and electrophysiological analysis. Our understanding of how the structural and functional organization of presynaptic AZs are coupled has matured, as these processes are crucial for the understanding of synapse maturation and plasticity, and, thus, accurate information transfer and storage at chemical synapses.
Collapse
Affiliation(s)
- Tina Ghelani
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Blanco W, Bertram R, Tabak J. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems. Front Comput Neurosci 2017; 11:88. [PMID: 29085291 PMCID: PMC5649201 DOI: 10.3389/fncom.2017.00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2017] [Accepted: 09/15/2017] [Indexed: 11/23/2022] Open
Abstract
Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes that occur during development that may be observable even in actual neural systems where these changes are convoluted with changes in synaptic connectivity and intrinsic neural plasticity.
Collapse
Affiliation(s)
- Wilfredo Blanco
- Department of Computer Science, State University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Memory, Sleep and Dreams, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| | - Joël Tabak
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
11
|
Richter LMA, Gjorgjieva J. Understanding neural circuit development through theory and models. Curr Opin Neurobiol 2017; 46:39-47. [DOI: 10.1016/j.conb.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022]
|