1
|
Zheng YJ, Adams DL, Gentry TN, Dilbeck MD, Economides JR, Horton JC. Retinal Input to Macaque Superior Colliculus Derives from Branching Axons Projecting to the Lateral Geniculate Nucleus. J Neurosci 2024; 44:e0888242024. [PMID: 39251353 PMCID: PMC11529808 DOI: 10.1523/jneurosci.0888-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
The superior colliculus receives a direct projection from retinal ganglion cells. In primates, it remains unknown if the same ganglion cells also supply the lateral geniculate nucleus. To address this issue, a double-label experiment was performed in two male macaques. The animals fixated a target while injection sites were scouted in the superior colliculus by recording and stimulating with a tetrode. Once suitable sites were identified, cholera toxin subunit B-Alexa Fluor 488 was injected via an adjacent micropipette. In a subsequent acute experiment, cholera toxin subunit B-Alexa Fluor 555 was injected into the lateral geniculate nucleus at matching retinotopic locations. After a brief survival period, ganglion cells were examined in retinal flatmounts. The percentage of double-labeled cells varied locally, depending on the relative efficiency of retrograde transport by each tracer and the precision of retinotopic overlap of injection sites in each target nucleus. In counting boxes with extensive overlap, 76-98% of ganglion cells projecting to the superior colliculus were double labeled. Cells projecting to the superior colliculus constituted 4.0-6.7% of the labeled ganglion cell population. In one particularly large zone, there were 5,746 cells labeled only by CTB-AF555, 561cells double labeled by CTB-AF555 and CTB-AF488, but no cell labeled only by CTB-AF488. These data indicate that retinal input to the macaque superior colliculus arises from a collateral axonal branch supplied by ∼5% of the ganglion cells that project to the lateral geniculate nucleus. Surprisingly, there exist no ganglion cells that project exclusively to the SC.
Collapse
Affiliation(s)
- Yicen J Zheng
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143
| | - Daniel L Adams
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143
| | - Thomas N Gentry
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143
| | - Mikayla D Dilbeck
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143
| | - John R Economides
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143
| | - Jonathan C Horton
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
2
|
Ramachandran S, Das VE. A competition framework for fixation-preference in strabismus. Front Neurosci 2023; 17:1266387. [PMID: 37920302 PMCID: PMC10618360 DOI: 10.3389/fnins.2023.1266387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Strabismic subjects often develop the ability to fixate on a target with either eye. Previous studies have shown that fixation-preference behavior varies systematically depending on spatial location of the target. We hypothesized that, when an eccentric target is presented, oculomotor fixation-preference in strabismus may be accounted for in a competitive decision framework wherein the brain must choose between two possible retinal errors to prepare a conjugate saccade that results in one of the eyes acquiring the eccentric target. We tested this framework by recording from visuo-motor neurons in the superior colliculus (SC) of two strabismic rhesus macaque monkeys as they performed a delayed saccade task under binocular viewing conditions. In one experiment, visual targets were presented at one of two locations corresponding to the neuronal receptive field location with respect to either the viewing or the deviated eye. Robust visual sensory responses were observed when targets were presented at either location indicating the presence of competing sensory signals for eye-choice. In a second experiment, a single visual target was placed at the neuronal receptive field location where the animal switched fixation on some trials and did not on other trials. At such target locations where either eye could acquire the target, both visual and build-up activity was greater in trials when the saccade encoded by the neuron "won." These findings provide evidence for the influence of visual suppression within SC sensory activity and support the possible utilization of a competition framework, one that has been previously described for when a binocularly aligned animal chooses from among multiple targets, to drive fixation-preference behavior in strabismus.
Collapse
Affiliation(s)
| | - Vallabh E. Das
- College of Optometry, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Chen MH, Yan JH. Diffusion tensor imaging of horizontal extraocular muscles in patients with concomitant and paralytic esotropia. Int J Ophthalmol 2023; 16:1350-1355. [PMID: 37602335 PMCID: PMC10398516 DOI: 10.18240/ijo.2023.08.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
AIM To assess metrics of diffusion tensor imagining (DTI) in evaluating microstructural abnormalities of horizontal extraocular muscles (EOM) in esotropia. METHODS Six adult concomitant esotropia patients, 5 unilateral abducent paralysis patients and 2 healthy volunteers were enrolled. Conventional magnetic resonance imaging (MRI) and DTI were performed on all subjects using 3T MR scanner. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of medial and lateral rectus muscles were measured and compared between patients group and control group. RESULTS Medial rectus MD and RD within the adducted eye of concomitant patients was significantly greater than that in unilateral abducent paralysis patients (0.259×10-2 mm2/s vs 0.207×10-2 mm2/s, P=0.014; 0.182×10-2 mm2/s vs 0.152×10-2 mm2/s, P=0.017). Both strabismus patients showed a significantly decreased MD and AD than that obtained in normal controls for lateral rectus muscles (P<0.05). Medial rectus MD of the adducted eye in concomitant strabismus patients was significantly decreased than that in healthy controls (0.259×10-2 mm2/s vs 0.266×10-2 mm2/s, P=0.010). Lateral rectus AD of the adducted eye in concomitant strabismus patients was significantly decreased as compared with that in healthy controls (0.515×10-2 mm2/s vs 0.593×10-2 mm2/s, P=0.013). No statistically significant differences were present between the adducted and fixating eyes in concomitant strabismus patients. CONCLUSION DTI represents a feasible technique to assess tissue characteristics of EOM. The effects of eye position changes on DTI parameters are subtle. Decreased MD and RD could be evidence for remodeling of the medial rectus muscle contracture. Lower medial and lateral recuts MD of concomitant esotropia patients indicates a thinner fibrous structure of the EOM. Lower MD and AD should be general character of esotropia.
Collapse
Affiliation(s)
- Ming-Hao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, Guangdong Province, China
| | - Jian-Hua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
4
|
Pallus A, Walton MMG. Microstimulation of Interstitial Nucleus of Cajal Evokes Directionally Disconjugate Eye Movements in Monkeys With Pattern Strabismus. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36326726 PMCID: PMC9645357 DOI: 10.1167/iovs.63.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose Pattern strabismus is characterized by a horizontal misalignment of the eyes that varies with vertical eye position. This disorder has traditionally been described, and treated, as overaction or underaction of the oblique muscles. In recent years, evidence has accumulated that indicate that the disorder is associated with abnormal cross-talk between brainstem pathways that contribute to the horizontal and vertical components of eye movements. The present study was designed to investigate the hypothesis that the key abnormalities are at the level of, or downstream from, the interstitial nucleus of Cajal (INC). Methods Microstimulation was applied to the INC in two mature rhesus monkeys with "A" pattern strabismus that was experimentally induced in infancy. We asked whether the evoked movements would be vertical and conjugate, as has been previously reported in normal monkeys, or would be directionally disconjugate (i.e. with oblique or horizontal movement observed for at least one eye). Results Evoked movements were conjugate and vertical for a minority of sites but, for most sites, the evoked movements were directionally disconjugate. Moreover, there was typically a convergent change in horizontal strabismus when the evoked movements were upward and a divergent change when the evoked movements were downward. Conclusions Microstimulation of INC in monkeys with A-pattern strabismus evokes movements with the expected directional disconjugacies, implying that the key neural abnormalities are within, or downstream from, this structure. High site-to-site variability in the conjugacy/disconjugacy of evoked movements rules out the hypothesis that the abnormalities are solely peripheral.
Collapse
Affiliation(s)
- Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Mark M. G. Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| |
Collapse
|
5
|
Dilbeck MD, Spahr ZR, Nanjappa R, Economides JR, Horton JC. Columnar and Laminar Segregation of Retinal Input to the Primate Superior Colliculus Revealed by Anterograde Tracer Injection Into Each Eye. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 34994767 PMCID: PMC8742525 DOI: 10.1167/iovs.63.1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose After the lateral geniculate nucleus, the superior colliculus is the richest target of retinal projections in primates. Hubel et al. used tritium autoradiography to show that axon terminals emanating from one eye form irregular columns in the stratum griseum superficiale. Unlabeled gaps were thought to be filled by the other eye, but this assumption was never tested directly. Methods Experiments were performed in two normal macaques. In monkey 1, [3H]proline was injected into the left eye and the pattern of radiolabeling was examined in serial cross-sections through the entire superior colliculus. In monkey 2, cholera toxin subunit B conjugated to Alexa 488 was injected into the right eye and cholera toxin subunit B - Alexa 594 was injected into the left eye. The two fluorescent labels were compared in a reconstruction of the superior colliculus prepared from serial sections. Results In monkey 1, irregular columns of axon terminals were present in the superficial grey. The projection from the peripheral retina was stronger than the projection from the macula. In monkey 2, the two fluorescent Alexa tracers mainly interdigitated: a conspicuous gap in one label was usually filled by a clump of the other label. There was also partial laminar segregation of ocular inputs. In the far peripheral field representation, the contralateral eye's input generally terminated closer to the tectal surface. In the midperiphery the eyes switched, bringing the ipsilateral input nearer the surface. Conclusions Direct retinal input to the macaque superior colliculus is segregated into alternating columns and strata, despite the fact that tectal cells respond robustly to stimulation of either eye.
Collapse
Affiliation(s)
- Mikayla D Dilbeck
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Zachary R Spahr
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Rakesh Nanjappa
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - John R Economides
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Jonathan C Horton
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
6
|
Martin TL, Murray J, Garg K, Gallagher C, Shaikh AG, Ghasia FF. Fixation eye movement abnormalities and stereopsis recovery following strabismus repair. Sci Rep 2021; 11:14417. [PMID: 34257361 PMCID: PMC8277881 DOI: 10.1038/s41598-021-93919-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
We evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.
Collapse
Affiliation(s)
- Talora L Martin
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Visual Neurosciences and Ocular Motility Laboratory, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jordan Murray
- Visual Neurosciences and Ocular Motility Laboratory, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiran Garg
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Visual Neurosciences and Ocular Motility Laboratory, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles Gallagher
- Visual Neurosciences and Ocular Motility Laboratory, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Daroff-Del'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, USA
- Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Fatema F Ghasia
- Visual Neurosciences and Ocular Motility Laboratory, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Daroff-Del'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
7
|
Economides JR, Adams DL, Horton JC. Interocular Suppression in Primary Visual Cortex in Strabismus. J Neurosci 2021; 41:5522-5533. [PMID: 33941649 PMCID: PMC8221600 DOI: 10.1523/jneurosci.0044-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
People with strabismus acquired during childhood do not experience diplopia (double vision). To investigate how perception of the duplicate image is suppressed, we raised two male monkeys with alternating exotropia by disinserting the medial rectus muscle in each eye at age four weeks. Once the animals were mature, they were brought to the laboratory and trained to fixate a small spot while recordings were made in primary visual cortex (V1). Drifting gratings were presented to the receptive fields of 500 single neurons for eight interleaved conditions: (1) right eye monocular; (2) left eye monocular; (3) right eye's field, right eye fixating; (4) right eye's field, left eye fixating; (5) left eye's field, right eye fixating; (6) left eye's field, left eye fixating; (7) both eyes' fields, right eye fixating; (8) both eyes' fields, left eye fixating. As expected, ocular dominance histograms showed a monocular bias compared with normal animals, but many cells could still be driven via both eyes. Overall, neuronal responses were not affected by switches in ocular fixation. Individual neurons exhibited binocular interactions, but mean population indices indicated no net interocular suppression or facilitation. Even neurons located in cortex with reduced cytochrome oxidase (CO) activity, representing portions of the nasal visual field where perception is suppressed during binocular viewing, showed no net inhibition. These data indicate that V1 neurons do not appear to reflect strabismic suppression and therefore the elimination of diplopia is likely to be mediated at a higher cortical level.SIGNIFICANCE STATEMENT In patients with strabismus, images fall on non-corresponding points in the two retinas. Only one image is perceived, because signals emanating from the other eye that convey the duplicate image are suppressed. The benefit is that diplopia is prevented, but the penalty is that the visual feedback required to adjust eye muscle tone to realign the globes is eliminated. Here, we report the first electrophysiological recordings from the primary visual cortex (V1) in awake monkeys raised with strabismus. The experiments were designed to reveal how perception of double images is avoided.
Collapse
Affiliation(s)
- John R Economides
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, California 94143
| | - Daniel L Adams
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, California 94143
| | - Jonathan C Horton
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, California 94143
| |
Collapse
|
8
|
Choi V, Priebe NJ. Interocular velocity cues elicit vergence eye movements in mice. J Neurophysiol 2020; 124:623-633. [PMID: 32727261 DOI: 10.1152/jn.00697.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We stabilize the dynamic visual world on our retina by moving our eyes in response to motion signals. Coordinated movements between the two eyes are characterized as version when both eyes move in the same direction and vergence when the two eyes move in opposite directions. Vergence eye movements are necessary to track objects in three dimensions. In primates they can be elicited by intraocular differences in either spatial signals (disparity) or velocity, requiring the integration of left and right eye inputs. Whether mice are capable of similar behaviors is not known. To address this issue, we measured vergence eye movements in mice using a stereoscopic stimulus known to elicit vergence eye movements in primates. We found that mice also exhibit vergence eye movements, although at a low gain and that the primary driver of these vergence eye movements is interocular motion. Spatial disparity cues alone are ineffective. We also found that the vergence eye movements we observed in mice were robust to silencing visual cortex and to manipulations that disrupt the normal development of binocularity in visual cortex. A sublinear combination of motor commands driven by monocular signals is sufficient to account for our results.NEW & NOTEWORTHY The visual system integrates signals from the left and right eye to generate a representation of the world in depth. The binocular integration of signals may be observed from the coordinated vergence eye movements elicited by object motion in depth. We explored the circuits and signals responsible for these vergence eye movements in rodent and find these vergence eye movements are generated by a comparison of the motion and not spatial visual signals.
Collapse
Affiliation(s)
- Veronica Choi
- Center for Perceptual Systems, The University of Texas, Austin, Texas.,Center for Learning and Memory, The University of Texas, Austin, Texas.,Department of Neuroscience, The University of Texas, Austin, Texas
| | - Nicholas J Priebe
- Center for Learning and Memory, The University of Texas, Austin, Texas.,Department of Neuroscience, The University of Texas, Austin, Texas
| |
Collapse
|
9
|
Horton JC, Adams DL, Economides JR. Saccade Strategy in Alternating Exotropia. SHINKEI GANKA = NEURO-OPHTHALMOLOGY JAPAN 2020; 37:196-202. [PMID: 34866747 PMCID: PMC8641942 DOI: 10.11476/shinkeiganka.37.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Patient with exotropia frequently alternate fixation, looking at something with one eye and then switching their attention to acquire a new target with the other eye. Which eye informs the brain about the location of the new target? To address this issue, we presented targets dichoptically to 16 exotropes that were visible to the fixating eye, the deviated eye, or to both eyes. We then compared the subjects' choice of eye for target acquisition with the organization of their suppression scotomas. There was a correspondence between suppression scotoma maps and the eye used to acquire peripheral targets. In other words, a target perceived via an eye was also fixated by it. These studies reveal how patients with alternating strabismus, despite eye misalignment, manage to localize and fixate efficiently visual targets in their environment.
Collapse
Affiliation(s)
- Jonathan C Horton
- Department of Ophthalmology, Program in Neuroscience, University of California, San Francisco
| | - Daniel L Adams
- Department of Ophthalmology, Program in Neuroscience, University of California, San Francisco
| | - John R Economides
- Department of Ophthalmology, Program in Neuroscience, University of California, San Francisco
| |
Collapse
|
10
|
Pallus A, Walton MMG. Abnormal Tuning in Nucleus Prepositus Hypoglossi of Monkeys With "A" Pattern Exotropia. Invest Ophthalmol Vis Sci 2020; 61:45. [PMID: 32446250 PMCID: PMC7405765 DOI: 10.1167/iovs.61.5.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose In many individuals with pattern strabismus, the vertical misalignment varies with horizontal eye position. It has been proposed that these cross-axis effects result from abnormal cross-talk between brainstem structures that would normally encode horizontal and vertical eye position and velocity. The nucleus prepositus hypoglossi (NPH) is an ideal structure to test this overarching hypothesis. Neurons in the NPH are believed to mathematically integrate eye velocity signals to generate a tonic signal related to horizontal eye position. We hypothesized that, in monkeys with A-pattern exotropia and vertical inconcomitance, these neurons would show an abnormally large sensitivity to vertical eye position. Methods Three rhesus monkeys (1 normal and 2 with A-pattern exotropia) were trained to maintain fixation on a visual target as it stepped to various locations on a tangent screen. Extracellular neural activity was recorded from neurons in the NPH. Each neuron's sensitivity to horizontal and vertical eye position was estimated using multiple linear regression and preferred directions computed for each eye. Results Unexpectedly, the mean preferred directions for the left eye were normal in the monkeys with A-pattern exotropia. For the right eye, there was a clear upward deviation for the right NPH and a downward deviation for the left NPH. In addition, the R2 values were significantly lower for model fits for neurons recorded from the exotropic monkeys. Conclusions We suggest that vertical inconcomitance results from inappropriate vertical-to-horizontal cross-talk that affects the two eyes differently.
Collapse
|
11
|
Upadhyaya S, Das VE. Response Properties of Cells Within the Rostral Superior Colliculus of Strabismic Monkeys. Invest Ophthalmol Vis Sci 2020; 60:4292-4302. [PMID: 31618766 PMCID: PMC6996666 DOI: 10.1167/iovs.19-27786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The superior colliculus (SC) is an important oculomotor structure which, in addition to saccades and smooth-pursuit, has been implicated in vergence. Previously we showed that electrical stimulation of the SC changes strabismus angle in monkey models. The purpose of this study was to record from neurons in the rostral SC (rSC) of two exotropic (XT; divergent strabismus) monkeys (M1, M2) and characterize their response properties, including possible correlation with strabismus angle. Methods Binocular eye movements and neural data were acquired as the monkeys performed fixation and saccade tasks with either eye viewing. Results Forty-two cells with responses likely related to eye misalignment were recorded from the rSC of the strabismic monkeys of which 29 increased firing for smaller angles of exotropia and 13 increased firing for larger exotropia. Twenty-six of thirty-five cells showed a pause (decrease in firing rate) during large amplitude saccades. Blanking the target briefly during fixation did not reduce firing responses indicating a lack of visual sensitivity. A bursting response for nystagmus quick phases was identified in cells whose topographic location matched the direction and amplitude of quick phases. Conclusions Certain cells in the rSC show responses related to eye misalignment suggesting that the SC is part of a vergence circuit that plays a role in setting strabismus angle. An alternative interpretation is that these cells display ocular preference, also a novel finding, and could potentially act as a driver of downstream oculomotor structures that maintain the state of strabismus.
Collapse
Affiliation(s)
- Suraj Upadhyaya
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|