1
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed Representations of Sound and Action in the Auditory Midbrain. J Neurosci 2024; 44:e1831232024. [PMID: 38918064 PMCID: PMC11270520 DOI: 10.1523/jneurosci.1831-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
Collapse
Affiliation(s)
- Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
de Hoz L, McAlpine D. Noises on-How the Brain Deals with Acoustic Noise. BIOLOGY 2024; 13:501. [PMID: 39056695 PMCID: PMC11274191 DOI: 10.3390/biology13070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
What is noise? When does a sound form part of the acoustic background and when might it come to our attention as part of the foreground? Our brain seems to filter out irrelevant sounds in a seemingly effortless process, but how this is achieved remains opaque and, to date, unparalleled by any algorithm. In this review, we discuss how noise can be both background and foreground, depending on what a listener/brain is trying to achieve. We do so by addressing questions concerning the brain's potential bias to interpret certain sounds as part of the background, the extent to which the interpretation of sounds depends on the context in which they are heard, as well as their ethological relevance, task-dependence, and a listener's overall mental state. We explore these questions with specific regard to the implicit, or statistical, learning of sounds and the role of feedback loops between cortical and subcortical auditory structures.
Collapse
Affiliation(s)
- Livia de Hoz
- Neuroscience Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany
| | - David McAlpine
- Neuroscience Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Linguistics, Macquarie University Hearing, Australian Hearing Hub, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Ford AN, Czarny JE, Rogalla MM, Quass GL, Apostolides PF. Auditory Corticofugal Neurons Transmit Auditory and Non-auditory Information During Behavior. J Neurosci 2024; 44:e1190232023. [PMID: 38123993 PMCID: PMC10869159 DOI: 10.1523/jneurosci.1190-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.
Collapse
Affiliation(s)
- Alexander N Ford
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Jordyn E Czarny
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Gunnar L Quass
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Chen C, Cruces-Solís H, Ertman A, de Hoz L. Subcortical coding of predictable and unsupervised sound-context associations. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100110. [PMID: 38020811 PMCID: PMC10663128 DOI: 10.1016/j.crneur.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Our environment is made of a myriad of stimuli present in combinations often patterned in predictable ways. For example, there is a strong association between where we are and the sounds we hear. Like many environmental patterns, sound-context associations are learned implicitly, in an unsupervised manner, and are highly informative and predictive of normality. Yet, we know little about where and how unsupervised sound-context associations are coded in the brain. Here we measured plasticity in the auditory midbrain of mice living over days in an enriched task-less environment in which entering a context triggered sound with different degrees of predictability. Plasticity in the auditory midbrain, a hub of auditory input and multimodal feedback, developed over days and reflected learning of contextual information in a manner that depended on the predictability of the sound-context association and not on reinforcement. Plasticity manifested as an increase in response gain and tuning shift that correlated with a general increase in neuronal frequency discrimination. Thus, the auditory midbrain is sensitive to unsupervised predictable sound-context associations, revealing a subcortical engagement in the detection of contextual sounds. By increasing frequency resolution, this detection might facilitate the processing of behaviorally relevant foreground information described to occur in cortical auditory structures.
Collapse
Affiliation(s)
- Chi Chen
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate School of Neurosciences and Molecular Biosciences, Germany
- Charité Medical University, Neuroscience Research Center, Berlin, Germany
| | - Hugo Cruces-Solís
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate School of Neurosciences and Molecular Biosciences, Germany
| | - Alexandra Ertman
- Charité Medical University, Neuroscience Research Center, Berlin, Germany
- International Graduate Program Medical Neurosciences, Charité Medical University, Berlin, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Charité Medical University, Neuroscience Research Center, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
5
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Issa LK, Sekaran NVC, Llano DA. Highly branched and complementary distributions of layer 5 and layer 6 auditory corticofugal axons in mouse. Cereb Cortex 2023; 33:9566-9582. [PMID: 37386697 PMCID: PMC10431747 DOI: 10.1093/cercor/bhad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
The auditory cortex exerts a powerful, yet heterogeneous, effect on subcortical targets. Auditory corticofugal projections emanate from layers 5 and 6 and have complementary physiological properties. While several studies suggested that layer 5 corticofugal projections branch widely, others suggested that multiple independent projections exist. Less is known about layer 6; no studies have examined whether the various layer 6 corticofugal projections are independent. Therefore, we examined branching patterns of layers 5 and 6 auditory corticofugal neurons, using the corticocollicular system as an index, using traditional and novel approaches. We confirmed that dual retrograde injections into the mouse inferior colliculus and auditory thalamus co-labeled subpopulations of layers 5 and 6 auditory cortex neurons. We then used an intersectional approach to relabel layer 5 or 6 corticocollicular somata and found that both layers sent extensive branches to multiple subcortical structures. Using a novel approach to separately label layers 5 and 6 axons in individual mice, we found that layers 5 and 6 terminal distributions partially spatially overlapped and that giant terminals were only found in layer 5-derived axons. Overall, the high degree of branching and complementarity in layers 5 and 6 axonal distributions suggest that corticofugal projections should be considered as 2 widespread systems, rather than collections of individual projections.
Collapse
Affiliation(s)
- Lina K Issa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Nathiya V C Sekaran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, United States
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
7
|
Schmitt TTX, Andrea KMA, Wadle SL, Hirtz JJ. Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex. Front Neural Circuits 2023; 17:1210057. [PMID: 37521334 PMCID: PMC10372447 DOI: 10.3389/fncir.2023.1210057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC). This corticocollicular (CC) pathway is involved in processing of complex sounds, auditory-related learning, and defense behavior. Partly due to their location in deep cortical layers, CC neuron population activity patterns within neuronal AC ensembles remain poorly understood. We employed two-photon imaging to record the activity of hundreds of L5 neurons in anesthetized as well as awake animals. CC neurons are broader tuned than other L5 pyramidal neurons and display weaker topographic order in core AC subfields. Network activity analyses revealed stronger clusters of CC neurons compared to non-CC neurons, which respond more reliable and integrate information over larger distances. However, results obtained from secondary auditory cortex (A2) differed considerably. Here CC neurons displayed similar or higher topography, depending on the subset of neurons analyzed. Furthermore, specifically in A2, CC activity clusters formed in response to complex sounds were spatially more restricted compared to other L5 neurons. Our findings indicate distinct network mechanism of CC neurons in analyzing sound properties with pronounced subfield differences, demonstrating that the topography of sound-evoked responses within AC is neuron-type dependent.
Collapse
|
8
|
Ibrahim BA, Louie JJ, Shinagawa Y, Xiao G, Asilador AR, Sable HJK, Schantz SL, Llano DA. Developmental Exposure to Polychlorinated Biphenyls Prevents Recovery from Noise-Induced Hearing Loss and Disrupts the Functional Organization of the Inferior Colliculus. J Neurosci 2023; 43:4580-4597. [PMID: 37147134 PMCID: PMC10286948 DOI: 10.1523/jneurosci.0030-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Exposure to combinations of environmental toxins is growing in prevalence; and therefore, understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins, polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise, interact to produce dysfunction in central auditory processing. PCBs are well established to impose negative developmental impacts on hearing. However, it is not known whether developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 min of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus (IC) revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins.SIGNIFICANCE STATEMENT Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the prenatal and postnatal developmental changes induced by polychlorinated biphenyls (PCBs) could negatively impact the resilience of the brain to noise-induced hearing loss (NIHL) later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jeremy J Louie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Helen J K Sable
- The Department of Psychology, The University of Memphis, Memphis, Tennessee 38152
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
9
|
Ibrahim BA, Louie J, Shinagawa Y, Xiao G, Asilador AR, Sable HJK, Schantz SL, Llano DA. Developmental exposure to polychlorinated biphenyls prevents recovery from noise-induced hearing loss and disrupts the functional organization of the inferior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534008. [PMID: 36993666 PMCID: PMC10055398 DOI: 10.1101/2023.03.23.534008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Exposure to combinations of environmental toxins is growing in prevalence, and therefore understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins - polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise - interact to produce dysfunction in central auditory processing. PCBs are well-established to impose negative developmental impacts on hearing. However, it is not known if developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 minutes of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins. Significance statement Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the pre-and postnatal developmental changes induced by polychlorinated biphenyls could negatively impact the resilience of the brain to noise-induced hearing loss later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeremy Louie
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yoshitaka Shinagawa
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gang Xiao
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander R. Asilador
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Helen J. K. Sable
- The Department of Psychology, The University of Memphis, Memphis, TN 38152, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel A. Llano
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
McAlpine D, de Hoz L. Listening loops and the adapting auditory brain. Front Neurosci 2023; 17:1081295. [PMID: 37008228 PMCID: PMC10060829 DOI: 10.3389/fnins.2023.1081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Analysing complex auditory scenes depends in part on learning the long-term statistical structure of sounds comprising those scenes. One way in which the listening brain achieves this is by analysing the statistical structure of acoustic environments over multiple time courses and separating background from foreground sounds. A critical component of this statistical learning in the auditory brain is the interplay between feedforward and feedback pathways—“listening loops”—connecting the inner ear to higher cortical regions and back. These loops are likely important in setting and adjusting the different cadences over which learned listening occurs through adaptive processes that tailor neural responses to sound environments that unfold over seconds, days, development, and the life-course. Here, we posit that exploring listening loops at different scales of investigation—from in vivo recording to human assessment—their role in detecting different timescales of regularity, and the consequences this has for background detection, will reveal the fundamental processes that transform hearing into the essential task of listening.
Collapse
Affiliation(s)
- David McAlpine
- Department of Linguistics, Macquarie University, Sydney, NSW, Australia
- *Correspondence: David McAlpine,
| | - Livia de Hoz
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
11
|
Sibille J, Kremkow J, Koch U. Absence of the Fragile X messenger ribonucleoprotein alters response patterns to sounds in the auditory midbrain. Front Neurosci 2022; 16:987939. [PMID: 36188480 PMCID: PMC9523263 DOI: 10.3389/fnins.2022.987939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Among the different autism spectrum disorders, Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Sensory and especially auditory hypersensitivity is a key symptom in patients, which is well mimicked in the Fmr1 -/- mouse model. However, the physiological mechanisms underlying FXS’s acoustic hypersensitivity in particular remain poorly understood. Here, we categorized spike response patterns to pure tones of different frequencies and intensities from neurons in the inferior colliculus (IC), a central integrator in the ascending auditory pathway. Based on this categorization we analyzed differences in response patterns between IC neurons of wild-type (WT) and Fmr1 -/- mice. Our results report broadening of frequency tuning, an increased firing in response to monaural as well as binaural stimuli, an altered balance of excitation-inhibition, and reduced response latencies, all expected features of acoustic hypersensitivity. Furthermore, we noticed that all neuronal response types in Fmr1 -/- mice displayed enhanced offset-rebound activity outside their excitatory frequency response area. These results provide evidence that the loss of Fmr1 not only increases spike responses in IC neurons similar to auditory brainstem neurons, but also changes response patterns such as offset spiking. One can speculate this to be an underlying aspect of the receptive language problems associated with Fragile X syndrome.
Collapse
Affiliation(s)
- Jérémie Sibille
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jérémie Sibille, ,
| | - Jens Kremkow
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Ursula Koch
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Ursula Koch,
| |
Collapse
|
12
|
Jeschke M, Ohl FW, Wang X. Effects of Cortical Cooling on Sound Processing in Auditory Cortex and Thalamus of Awake Marmosets. Front Neural Circuits 2022; 15:786740. [PMID: 35069125 PMCID: PMC8766342 DOI: 10.3389/fncir.2021.786740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.
Collapse
Affiliation(s)
- Marcus Jeschke
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany,*Correspondence: Marcus Jeschke
| | - Frank W. Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Xiaoqin Wang
| |
Collapse
|
13
|
Vaithiyalingam Chandra Sekaran N, Deshpande MS, Ibrahim BA, Xiao G, Shinagawa Y, Llano DA. Patterns of Unilateral and Bilateral Projections From Layers 5 and 6 of the Auditory Cortex to the Inferior Colliculus in Mouse. Front Syst Neurosci 2021; 15:674098. [PMID: 34744644 PMCID: PMC8566350 DOI: 10.3389/fnsys.2021.674098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/04/2022] Open
Abstract
The auditory cortex sends massive projections to the inferior colliculus, but the organization of this pathway is not yet well understood. Previous work has shown that the corticocollicular projection emanates from both layers 5 and 6 of the auditory cortex and that neurons in these layers have different morphological and physiological properties. It is not yet known in the mouse if both layer 5 and layer 6 project bilaterally, nor is it known if the projection patterns differ based on projection location. Using targeted injections of Fluorogold into either the lateral cortex or dorsal cortex of the inferior colliculus, we quantified retrogradely labeled neurons in both the left and right lemniscal regions of the auditory cortex, as delineated using parvalbumin immunostaining. After dorsal cortex injections, we observed that approximately 18-20% of labeled cells were in layer 6 and that this proportion was similar bilaterally. After lateral cortex injections, only ipsilateral cells were observed in the auditory cortex, and they were found in both layer 5 and layer 6. The ratio of layer 5:layer 6 cells after lateral cortex injection was similar to that seen after dorsal cortex injection. Finally, injections of different tracers were made into the two inferior colliculi, and an average of 15-17% of cells in the auditory cortex were double-labeled, and these proportions were similar in layers 5 and 6. These data suggest that (1) only the dorsal cortex of the inferior colliculus receives bilateral projections from the auditory cortex, (2) both the dorsal and lateral cortex of the inferior colliculus receive similar layer 5 and layer 6 auditory cortical input, and (3) a subpopulation of individual neurons in both layers 5 and 6 branch to innervate both dorsal cortices of the inferior colliculus.
Collapse
Affiliation(s)
- Nathiya Vaithiyalingam Chandra Sekaran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Meena S. Deshpande
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Baher A. Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Carle Illinois College of Medicine, Urbana, IL, United States
| |
Collapse
|