1
|
Tsemperouli M, Cheppali SK, Rivera-Molina F, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. Biophys J 2024:S0006-3495(24)04104-3. [PMID: 39719826 DOI: 10.1016/j.bpj.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense-core vesicles (DCVs) and synaptic vesicles to the plasma membrane and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Félix Rivera-Molina
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Tsemperouli M, Cheppali SK, Molina FR, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612660. [PMID: 39314345 PMCID: PMC11419119 DOI: 10.1101/2024.09.12.612660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 09/25/2024]
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense core vesicles (DCV) and synaptic vesicles (SV) to the plasma membrane (PM) and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Felix Rivera Molina
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
- Wu Tsai Institute, Yale University
| |
Collapse
|
3
|
Tsai HH, Kao HJ, Kuo MW, Lin CH, Chang CM, Chen YY, Chen HH, Kwok PY, Yu AL, Yu J. Whole genomic analysis reveals atypical non-homologous off-target large structural variants induced by CRISPR-Cas9-mediated genome editing. Nat Commun 2023; 14:5183. [PMID: 37626063 PMCID: PMC10457329 DOI: 10.1038/s41467-023-40901-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
CRISPR-Cas9 genome editing has promising therapeutic potential for genetic diseases and cancers, but safety could be a concern. Here we use whole genomic analysis by 10x linked-read sequencing and optical genome mapping to interrogate the genome integrity after editing and in comparison to four parental cell lines. In addition to the previously reported large structural variants at on-target sites, we identify heretofore unexpected large chromosomal deletions (91.2 and 136 Kb) at atypical non-homologous off-target sites without sequence similarity to the sgRNA in two edited lines. The observed large structural variants induced by CRISPR-Cas9 editing in dividing cells may result in pathogenic consequences and thus limit the usefulness of the CRISPR-Cas9 editing system for disease modeling and gene therapy. In this work, our whole genomic analysis may provide a valuable strategy to ensure genome integrity after genomic editing to minimize the risk of unintended effects in research and clinical applications.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Jung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital and School of Medicine, Taipei, Taiwan
| | - Chun-Min Chang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Yin Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Huei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pui-Yan Kwok
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Cardiovascular Research Institute, Institute for Human Genetics, and Department of Dermatology, University of California, San Francisco, USA
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Pediatrics, University of California, San Diego, USA
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Izumi T. Multiple pathways and independent functional pools in insulin granule exocytosis. Genes Cells 2023; 28:471-481. [PMID: 37070774 PMCID: PMC11448364 DOI: 10.1111/gtc.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
In contrast to synaptic vesicle exocytosis, secretory granule exocytosis follows a much longer time course, and thus allows for different prefusion states prior to stimulation. Indeed, total internal reflection fluorescence microscopy in living pancreatic β cells reveals that, prior to stimulation, either visible or invisible granules fuse in parallel during both early (first) and late (second) phases after glucose stimulation. Therefore, fusion occurs not only from granules predocked to the plasma membrane but also from those translocated from the cell interior during ongoing stimulation. Recent findings suggest that such heterogeneous exocytosis is conducted by a specific set of multiple Rab27 effectors that appear to operate on the same granule; namely, exophilin-8, granuphilin, and melanophilin play differential roles in distinct secretory pathways to final fusion. Furthermore, the exocyst, which is known to tether secretory vesicles to the plasma membrane in constitutive exocytosis, cooperatively functions with these Rab27 effectors in regulated exocytosis. In this review, the basic nature of insulin granule exocytosis will be described as a representative example of secretory granule exocytosis, followed by a discussion of the means by which different Rab27 effectors and the exocyst coordinate to regulate the entire exocytic processes in β cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
5
|
Zhao K, Matsunaga K, Mizuno K, Wang H, Okunishi K, Izumi T. Functional hierarchy among different Rab27 effectors involved in secretory granule exocytosis. eLife 2023; 12:82821. [PMID: 36803984 PMCID: PMC9988257 DOI: 10.7554/elife.82821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
The Rab27 effectors are known to play versatile roles in regulated exocytosis. In pancreatic beta cells, exophilin-8 anchors granules in the peripheral actin cortex, whereas granuphilin and melanophilin mediate granule fusion with and without stable docking to the plasma membrane, respectively. However, it is unknown whether these coexisting effectors function in parallel or in sequence to support the whole insulin secretory process. Here, we investigate their functional relationships by comparing the exocytic phenotypes in mouse beta cells simultaneously lacking two effectors with those lacking just one of them. Analyses of prefusion profiles by total internal reflection fluorescence microscopy suggest that melanophilin exclusively functions downstream of exophilin-8 to mobilize granules for fusion from the actin network to the plasma membrane after stimulation. The two effectors are physically linked via the exocyst complex. Downregulation of the exocyst component affects granule exocytosis only in the presence of exophilin-8. The exocyst and exophilin-8 also promote fusion of granules residing beneath the plasma membrane prior to stimulation, although they differentially act on freely diffusible granules and those stably docked to the plasma membrane by granuphilin, respectively. This is the first study to diagram the multiple intracellular pathways of granule exocytosis and the functional hierarchy among different Rab27 effectors within the same cell.
Collapse
Affiliation(s)
- Kunli Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| |
Collapse
|
6
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
7
|
Liu R, Billington N, Yang Y, Bond C, Hong A, Siththanandan V, Takagi Y, Sellers JR. A binding protein regulates myosin-7a dimerization and actin bundle assembly. Nat Commun 2021; 12:563. [PMID: 33495456 PMCID: PMC7835385 DOI: 10.1038/s41467-020-20864-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Myosin-7a, despite being monomeric in isolation, plays roles in organizing actin-based cell protrusions such as filopodia, microvilli and stereocilia, as well as transporting cargoes within them. Here, we identify a binding protein for Drosophila myosin-7a termed M7BP, and describe how M7BP assembles myosin-7a into a motile complex that enables cargo translocation and actin cytoskeletal remodeling. M7BP binds to the autoinhibitory tail of myosin-7a, extending the molecule and activating its ATPase activity. Single-molecule reconstitution show that M7BP enables robust motility by complexing with myosin-7a as 2:2 translocation dimers in an actin-regulated manner. Meanwhile, M7BP tethers actin, enhancing complex’s processivity and driving actin-filament alignment during processive runs. Finally, we show that myosin-7a-M7BP complex assembles actin bundles and filopodia-like protrusions while migrating along them in living cells. Together, these findings provide insights into the mechanisms by which myosin-7a functions in actin protrusions. Myosin-7a is found in actin bundles, microvilli and stereocilia, and plays conserved roles in hearing and vision. Here the authors identify M7BP, a myosin-7a binding protein that activates and dimerizes myosin-7a, enabling cargo transport and assembly of actin bundles and filopodia-like protrusions
Collapse
Affiliation(s)
- Rong Liu
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Yang
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Laboratory of Functional Proteomics, College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Charles Bond
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy Hong
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Verl Siththanandan
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Two-component latency distributions indicate two-step vesicular release at simple glutamatergic synapses. Nat Commun 2018; 9:3943. [PMID: 30258069 PMCID: PMC6158186 DOI: 10.1038/s41467-018-06336-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023] Open
Abstract
It is often assumed that only stably docked synaptic vesicles can fuse following presynaptic action potential stimulation. However, during action potential trains docking sites are increasingly depleted, raising the question of the source of synaptic vesicles during sustained release. We have recently developed methods to reliably measure release latencies during high frequency trains at single synapses between parallel fibers and molecular layer interneurons. The latency distribution exhibits a single fast component at train onset but contains both a fast and a slow component later in the train. The contribution of the slow component increases with stimulation frequency and with release probability and decreases when blocking the docking step with latrunculin. These results suggest that the slow component reflects sequential docking and release in immediate succession. The transition from fast to slow component, as well as a later transition to asynchronous release, appear as successive adaptations of the synapse to maintain fidelity at the expense of time accuracy.
Collapse
|
9
|
Patrício-Rodrigues C, Teodoro R. Postsynaptic Rab GTPases and Exocyst: a screen at the Drosophila neuromuscular junction. ACTA ACUST UNITED AC 2018. [DOI: 10.19185/matters.201807000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
|
10
|
Yoshida A, Sakai N, Uekusa Y, Imaoka Y, Itagaki Y, Suzuki Y, Yoshimura SH. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biol 2018; 16:e2004786. [PMID: 29723197 PMCID: PMC5953504 DOI: 10.1371/journal.pbio.2004786] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2017] [Revised: 05/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. Cells communicate with their environments via the plasma membrane and various membrane proteins. Clathrin-mediated endocytosis (CME) plays a central role in such communication and proceeds with a series of multiprotein assembly, deformation of the plasma membrane, and production of a membrane vesicle that delivers extracellular signaling molecules into the cytoplasm. In this study, we utilized our home-built correlative imaging system comprising high-speed atomic force microscopy (HS-AFM) and confocal fluorescence microscopy to simultaneously image morphological changes of the plasma membrane and protein localization during CME in a living cell. The results revealed a tight correlation between the size of the pit and the amount of clathrin assembled. Actin dynamics play multiple roles in the assembly, maturation, and closing phases of the process, and affects membrane morphology, suggesting a close relationship between endocytosis and dynamic events at the cell cortex. Knock down of dynamin also affected the closing motion of the pit and showed functional correlation with actin.
Collapse
Affiliation(s)
- Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Yuka Imaoka
- R&D Group, Olympus Corporation, Hachioji, Japan
| | | | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
11
|
Niedergang F, Gasman S, Vitale N, Desnos C, Lamaze C. Meeting after meeting: 20 years of discoveries by the members of the Exocytosis-Endocytosis Club. Biol Cell 2017; 109:339-353. [DOI: 10.1111/boc.201700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Florence Niedergang
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1016 Institut Cochin Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 8104 Paris France
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
- CNRS; UMR 8250 Paris France
| | - Christophe Lamaze
- Institut Curie - Centre de Recherche; PSL Research University; Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory; Paris France
- CNRS; UMR 3666 Paris France
- INSERM; U1143 Paris France
| |
Collapse
|
12
|
Near-Membrane Refractometry Using Supercritical Angle Fluorescence. Biophys J 2017; 112:1940-1948. [PMID: 28494964 DOI: 10.1016/j.bpj.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy and its variants are key technologies for visualizing the dynamics of single molecules or organelles in live cells. Yet truly quantitative TIRF remains problematic. One unknown hampering the interpretation of evanescent-wave excited fluorescence intensities is the undetermined cell refractive index (RI). Here, we use a combination of TIRF excitation and supercritical angle fluorescence emission detection to directly measure the average RI in the "footprint" region of the cell during image acquisition. Our RI measurement is based on the determination on a back-focal plane image of the critical angle separating evanescent and far-field fluorescence emission components. We validate our method by imaging mouse embryonic fibroblasts and BON cells. By targeting various dyes and fluorescent-protein chimeras to vesicles, the plasma membrane, as well as mitochondria and the endoplasmic reticulum, we demonstrate local RI measurements with subcellular resolution on a standard TIRF microscope, with a removable Bertrand lens as the only modification. Our technique has important applications for imaging axial vesicle dynamics and the mitochondrial energy state or detecting metabolically more active cancer cells.
Collapse
|
13
|
Fan F, Matsunaga K, Wang H, Ishizaki R, Kobayashi E, Kiyonari H, Mukumoto Y, Okunishi K, Izumi T. Exophilin-8 assembles secretory granules for exocytosis in the actin cortex via interaction with RIM-BP2 and myosin-VIIa. eLife 2017; 6. [PMID: 28673385 PMCID: PMC5496739 DOI: 10.7554/elife.26174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2017] [Accepted: 06/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophilin-8 has been reported to play a role in anchoring secretory granules within the actin cortex, due to its direct binding activities to Rab27 on the granule membrane and to F-actin and its motor protein, myosin-Va. Here, we show that exophilin-8 accumulates granules in the cortical F-actin network not by direct interaction with myosin-Va, but by indirect interaction with a specific form of myosin-VIIa through its previously unknown binding partner, RIM-BP2. RIM-BP2 also associates with exocytic machinery, Cav1.3, RIM, and Munc13-1. Disruption of the exophilin-8-RIM-BP2-myosin-VIIa complex by ablation or knockdown of each component markedly decreases both the peripheral accumulation and exocytosis of granules. Furthermore, exophilin-8-null mouse pancreatic islets lose polarized granule localization at the β-cell periphery and exhibit impaired insulin secretion. This newly identified complex acts as a physical and functional scaffold and provides a mechanism supporting a releasable pool of granules within the F-actin network beneath the plasma membrane.
Collapse
Affiliation(s)
- Fushun Fan
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
14
|
Papadopulos A. Membrane shaping by actin and myosin during regulated exocytosis. Mol Cell Neurosci 2017; 84:93-99. [PMID: 28536001 DOI: 10.1016/j.mcn.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
The cortical actin network in neurosecretory cells is a dense mesh of actin filaments underlying the plasma membrane. Interaction of actomyosin with vesicular membranes or the plasma membrane is vital for tethering, retention, transport as well as fusion and fission of exo- and endocytic membrane structures. During regulated exocytosis the cortical actin network undergoes dramatic changes in morphology to accommodate vesicle docking, fusion and replenishment. Most of these processes involve plasma membrane Phosphoinositides (PIP) and investigating the interactions between the actin cortex and secretory structures has become a hotbed for research in recent years. Actin remodelling leads to filopodia outgrowth and the creation of new fusion sites in neurosecretory cells and actin, myosin and dynamin actively shape and maintain the fusion pore of secretory vesicles. Changes in viscoelastic properties of the actin cortex can facilitate vesicular transport and lead to docking and priming of vesicle at the plasma membrane. Small GTPase actin mediators control the state of the cortical actin network and influence vesicular access to their docking and fusion sites. These changes potentially affect membrane properties such as tension and fluidity as well as the mobility of embedded proteins and could influence the processes leading to both exo- and endocytosis. Here we discuss the multitudes of actin and membrane interactions that control successive steps underpinning regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
16
|
Conte IL, Hellen N, Bierings R, Mashanov GI, Manneville JB, Kiskin NI, Hannah MJ, Molloy JE, Carter T. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis. J Cell Sci 2016; 129:592-603. [PMID: 26675235 PMCID: PMC4760305 DOI: 10.1242/jcs.178285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca(2+)-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa.
Collapse
Affiliation(s)
- Ianina L Conte
- Cardiovascular and Cell Science Research Institute, St George's University, London SW17 0RE, UK
| | - Nicola Hellen
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Ruben Bierings
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | | | | | - Nikolai I Kiskin
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Matthew J Hannah
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Tom Carter
- Cardiovascular and Cell Science Research Institute, St George's University, London SW17 0RE, UK
| |
Collapse
|
17
|
Abstract
Among the identified thousands of circular RNAs (circRNA) in humans and animals, Cdr1as (also known as CiRS-7) was recently demonstrated to act as a powerful miR-7 sponge/inhibitor in developing midbrain of zebrafish, suggesting a novel mechanism for regulating microRNA functions. MiR-7 is abundantly expressed in islet cells, but overexpressing miR-7 in transgenic mouse β cells causes diabetes. Therefore, we infer that Cdr1as expression may inhibit miR-7 function in islet cells, which in turn improves insulin secretion. Here, we show the first characterization of Cdr1as expression in islet cells, which was upregulated by long-term forskolin and PMA stimulation, but not high glucose, indicating the involvement of cAMP and PKC pathways. Remarkably, both insulin content and secretion were significantly increased by overexpression of Cdr1as in islet cells. We further identified a new target Myrip in the Cdr1as/miR-7 pathway that regulates insulin granule secretion, and also another target Pax6 that enhances insulin transcription. Taken together, our findings revealed the effects of the strongly interacting pair of Cdr1as/miR-7 on insulin secretion, which may become a new target for improving β cell function in diabetes.
Collapse
|
18
|
Bretou M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P, Guillon M, Emiliani V, Gasman S, Desnos C, Lennon-Duménil AM, Darchen F. Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 2014; 25:3195-209. [PMID: 25143404 PMCID: PMC4196869 DOI: 10.1091/mbc.e14-07-1229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
On exocytosis, membrane fusion starts with the formation of a narrow fusion pore that must expand to allow the release of secretory compounds. The GTPase Cdc42 promotes fusion pore dilation in neuroendocrine cells by controlling membrane tension. Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.
Collapse
Affiliation(s)
- Marine Bretou
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Ouardane Jouannot
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Isabelle Fanget
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Nathanaël Larochette
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Pierre Gestraud
- Institut Curie, Paris 75248, France Institut National de la Santé et de la Recherche Médicale, U900, Paris 75248, France Ecole des Mines ParisTech, Fontainebleau, 77300 France
| | - Marc Guillon
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Valentina Emiliani
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique/UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Université Strasbourg, 67084 Strasbourg, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| |
Collapse
|
19
|
Brunstein M, Hérault K, Oheim M. Eliminating unwanted far-field excitation in objective-type TIRF. Part II. combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning. Biophys J 2014; 106:1044-56. [PMID: 24606929 PMCID: PMC4026779 DOI: 10.1016/j.bpj.2013.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/29/2022] Open
Abstract
Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane.
Collapse
Affiliation(s)
- Maia Brunstein
- CNRS, UMR 8154, Paris, F-75006 France; INSERM, U603, Paris, F-75006 France; Laboratoire de Neurophysiologie et Nouvelles Microscopies, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, F-75006 France
| | - Karine Hérault
- CNRS, UMR 8154, Paris, F-75006 France; INSERM, U603, Paris, F-75006 France; Laboratoire de Neurophysiologie et Nouvelles Microscopies, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, F-75006 France
| | - Martin Oheim
- CNRS, UMR 8154, Paris, F-75006 France; INSERM, U603, Paris, F-75006 France; Laboratoire de Neurophysiologie et Nouvelles Microscopies, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, F-75006 France.
| |
Collapse
|
20
|
van der Sluijs P, Zibouche M, van Kerkhof P. Late steps in secretory lysosome exocytosis in cytotoxic lymphocytes. Front Immunol 2013; 4:359. [PMID: 24302923 PMCID: PMC3831147 DOI: 10.3389/fimmu.2013.00359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
Natural Killer cells are a subset of cytotoxic lymphocytes that are important in host defense against infections and transformed cells. They exert this function through recognition of target cells by cell surface receptors, which triggers a signaling program that results in a re-orientation of the microtubule organizing center and secretory lysosomes toward the target cell. Upon movement of secretory lysosomes to the plasma membrane and subsequent fusion, toxic proteins are released by secretory lysosomes in the immunological synapse which then enter and kill the target cell. In this minireview we highlight recent progress in our knowledge of late steps in this specialized secretion pathway and address important open questions.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht , Utrecht , Netherlands
| | | | | |
Collapse
|
21
|
Papadopulos A, Tomatis VM, Kasula R, Meunier FA. The cortical acto-Myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane. Front Endocrinol (Lausanne) 2013; 4:153. [PMID: 24155741 PMCID: PMC3800816 DOI: 10.3389/fendo.2013.00153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/15/2013] [Accepted: 10/05/2013] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca(2+) to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Vanesa M. Tomatis
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Ravikiran Kasula
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Frederic A. Meunier
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
- *Correspondence: Frederic A. Meunier, Queensland Brain Institute, The University of Queensland, St Lucia Campus, QBI Building #79, St Lucia, QLD 4072, Australia e-mail:
| |
Collapse
|
22
|
Sckolnick M, Krementsova EB, Warshaw DM, Trybus KM. More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va. J Biol Chem 2013; 288:29313-22. [PMID: 23979131 DOI: 10.1074/jbc.m113.476929] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Myosin Va (myoVa) is a molecular motor that processively transports cargo along actin tracks. One well studied cargo in vivo is the melanosome, a pigment organelle that is moved first by kinesin on microtubules and then handed off to myoVa for transport in the actin-rich dendritic periphery of melanocytes. Melanophilin (Mlph) is the adapter protein that links Rab27a-melanosomes to myoVa. Using total internal reflection fluorescence microscopy and quantum dot-labeled full-length myoVa, we show at the single-molecule level that Mlph increases the number of processively moving myoVa motors by 17-fold. Surprisingly, myoVa-Mlph moves ~4-fold slower than myoVa alone and with twice the run length. These two changes greatly increase the time spent on actin, a property likely to enhance the transfer of melanosomes to the adjacent keratinocyte. In contrast to the variable stepping pattern of full-length myoVa, the myoVa-Mlph complex shows a normal gating pattern between the heads typical of a fully active motor and consistent with a cargo-dependent activation mechanism. The Mlph-dependent changes in myoVa depend on a positively charged cluster of amino acids in the actin binding domain of Mlph, suggesting that Mlph acts as a "tether" that links the motor to the track. Our results provide a molecular explanation for the uncharacteristically slow speed of melanosome movement by myoVa in vivo. More generally, these data show that proteins that link motors to cargo can modify motor properties to enhance their biological role.
Collapse
Affiliation(s)
- Maria Sckolnick
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | | | | | | |
Collapse
|
23
|
Cox-Limpens KEM, Vles JSH, Schlechter J, Zimmermann LJI, Strackx E, Gavilanes AWD. Fetal brain genomic reprogramming following asphyctic preconditioning. BMC Neurosci 2013; 14:61. [PMID: 23800330 PMCID: PMC3724485 DOI: 10.1186/1471-2202-14-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2012] [Accepted: 06/20/2013] [Indexed: 12/25/2022] Open
Abstract
Background Fetal asphyctic (FA) preconditioning is effective in attenuating brain damage incurred by a subsequent perinatal asphyctic insult. Unraveling mechanisms of this endogenous neuroprotection, activated by FA preconditioning, is an important step towards new clinical strategies for asphyctic neonates. Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of preconditioning. Therefore we investigated whole genome differential gene expression in the preconditioned rat brain. FA preconditioning was induced on embryonic day 17 by reversibly clamping uterine circulation. Male control and FA offspring were sacrificed 96 h after FA preconditioning. Whole genome transcription was investigated with Affymetrix Gene1.0ST chip. Results Data were analyzed with the Bioconductor Limma package, which showed 53 down-regulated and 35 up-regulated transcripts in the FA-group. We validated these findings with RT-qPCR for adh1, edn1, leptin, rdh2, and smad6. Moreover, we investigated differences in gene expression across different brain regions. In addition, we performed Gene Set Enrichment Analysis (GSEA) which revealed 19 significantly down-regulated gene sets, mainly involved in neurotransmission and ion transport. 10 Gene sets were significantly up-regulated, these are mainly involved in nucleosomal structure and transcription, including genes such as mecp2. Conclusions Here we identify for the first time differential gene expression after asphyctic preconditioning in fetal brain tissue, with the majority of differentially expressed transcripts being down-regulated. The observed down-regulation of cellular processes such as neurotransmission and ion transport could represent a restriction in energy turnover which could prevent energy failure and subsequent neuronal damage in an asphyctic event. Up-regulated transcripts seem to exert their function mainly within the cell nucleus, and subsequent Gene Set Enrichment Analysis suggests that epigenetic mechanisms play an important role in preconditioning induced neuroprotection.
Collapse
|
24
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
25
|
Brozzi F, Lajus S, Diraison F, Rajatileka S, Hayward K, Regazzi R, Molnár E, Váradi A. MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway. Mol Biol Cell 2012; 23:4444-55. [PMID: 22993210 PMCID: PMC3496617 DOI: 10.1091/mbc.e12-05-0369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Myosin- and Rab-interacting protein is not a classic receptor for MyoVa on large, dense-core secretory granules (SGs), but it aids in PKA-dependent phosphorylation of MyoVa-associated proteins on SGs in endocrine and neuroendocrine cells. Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.
Collapse
Affiliation(s)
- Flora Brozzi
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|