1
|
Griffin BW, Martin-Silverstone E, Pêgas RV, Meilak EA, Costa FR, Palmer C, Rayfield EJ. Modelling take-off moment arms in an ornithocheiraean pterosaur. PeerJ 2024; 12:e17678. [PMID: 39119105 PMCID: PMC11308997 DOI: 10.7717/peerj.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Take-off is a vital part of powered flight which likely constrains the size of birds, yet extinct pterosaurs are known to have reached far larger sizes. Three different hypothesised take-off motions (bipedal burst launching, bipedal countermotion launching, and quadrupedal launching) have been proposed as explanations for how pterosaurs became airborne and circumvented this proposed morphological limit. We have constructed a computational musculoskeletal model of a 5 m wingspan ornithocheiraean pterosaur, reconstructing thirty-four key muscles to estimate the muscle moment arms throughout the three hypothesised take-off motions. Range of motion constrained hypothetical kinematic sequences for bipedal and quadrupedal take-off motions were modelled after extant flying vertebrates. Across our simulations we did not find higher hindlimb moment arms for bipedal take-off motions or noticeably higher forelimb moment arms in the forelimb for quadrupedal take-off motions. Despite this, in all our models we found the muscles utilised in the quadrupedal take-off have the largest total launch applicable moment arms throughout the entire take-off sequences and for the take-off pose. This indicates the potential availability of higher leverage for a quadrupedal take-off than hypothesised bipedal motions in pterosaurs pending further examination of muscle forces.
Collapse
Affiliation(s)
- Benjamin W. Griffin
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Rodrigo V. Pêgas
- Laboratory of Vertebrate Paleontology and Animal Behavior. Federal University of ABC, Alameda da Universidade, São Bernardo do Campo, SP, Brazil
| | - Erik Anthony Meilak
- School of Pharmacy and Bioengineering, University of Keele, Keele, United Kingdom
| | - Fabiana R. Costa
- Laboratory of Vertebrate Paleontology and Animal Behavior. Federal University of ABC, Alameda da Universidade, São Bernardo do Campo, SP, Brazil
| | - Colin Palmer
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Shikaya Y, Inaba M, Tadokoro R, Utsunomiya S, Takahashi Y. Optogenetic control of gut movements reveals peristaltic wave-mediated induction of cloacal contractions and reactivation of impaired gut motility. Front Physiol 2023; 14:1175951. [PMID: 37293264 PMCID: PMC10245550 DOI: 10.3389/fphys.2023.1175951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Gut peristalsis, recognized as a wave-like progression along the anterior-posterior gut axis, plays a pivotal role in the transportation, digestion, and absorption of ingested materials. The embryonic gut, which has not experienced ingested materials, undergoes peristalsis offering a powerful model for studying the intrinsic mechanisms underlying the gut motility. It has previously been shown in chicken embryos that acute contractions of the cloaca (an anus-like structure) located at the posterior end of the hindgut are tightly coupled with the arrival of hindgut-derived waves. To further scrutinize the interactions between hindgut and cloaca, we here developed an optogenetic method that produced artificial waves in the hindgut. A variant form of channelrhodopsin-2 (ChR2(D156C)), permitting extremely large photocurrents, was expressed in the muscle component of the hindgut of chicken embryos using Tol2-mediated gene transfer and in ovo electroporation techniques. The D156C-expressing hindgut responded efficiently to local pulses of blue light: local contractions emerge at an ectopic site in the hindgut, which were followed by peristaltic waves that reached to the endpoint of the hindgut. Markedly, the arrival of the optogenetically induced waves caused concomitant contractions of the cloaca, revealing that the hindgut-cloaca coordination is mediated by signals triggered by peristaltic waves. Moreover, a cloaca undergoing pharmacologically provoked aberrant contractions could respond to pulsed blue light irradiation. Together, the optogenetic technology developed in this study for inducing gut peristalsis paves the way to study the gut movement and also to explore therapeutic methodology for peristaltic disorders.
Collapse
|
3
|
Pumo GM, Kitazawa T, Rijli FM. Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development. Front Neural Circuits 2022; 16:911023. [PMID: 35664458 PMCID: PMC9158562 DOI: 10.3389/fncir.2022.911023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity generated before the onset of sensory transduction has a key role in wiring developing sensory circuits. From axonal targeting, to synapse formation and elimination, to the balanced integration of neurons into developing circuits, this type of activity is implicated in a variety of cellular processes. However, little is known about its molecular mechanisms of action, especially at the level of genome regulation. Conversely, sensory experience-dependent activity implements well-characterized transcriptional and epigenetic chromatin programs that underlie heterogeneous but specific genomic responses that shape both postnatal circuit development and neuroplasticity in the adult. In this review, we focus on our knowledge of the developmental processes regulated by spontaneous activity and the underlying transcriptional mechanisms. We also review novel findings on how chromatin regulates the specificity and developmental induction of the experience-dependent program, and speculate their relevance for our understanding of how spontaneous activity may act at the genomic level to instruct circuit assembly and prepare developing neurons for sensory-dependent connectivity refinement and processing.
Collapse
Affiliation(s)
- Gabriele M. Pumo
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| | - Taro Kitazawa
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Filippo M. Rijli
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Momose-Sato Y, Sato K. Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity. IBRO Rep 2020; 9:14-23. [PMID: 32642591 PMCID: PMC7334560 DOI: 10.1016/j.ibror.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/28/2022] Open
Abstract
Correlated spontaneous activity propagating over a wide region of the central nervous system is expressed during a specific period of embryonic development. We previously demonstrated using an optical imaging technique with a voltage-sensitive dye that this wave-like activity, which we referred to as the depolarization wave, is fundamentally involved in the early process of synaptic network formation. We found that the in ovo application of bicuculline/strychnine or d-tubocurarine, which blocked the neurotransmitters mediating the wave, significantly reduced functional synaptic expression in the brainstem sensory nucleus. This result, particularly for d-tubocurarine, an antagonist of nicotinic acetylcholine receptors, suggested that prenatal nicotine exposure associated with maternal smoking affects the development of neural circuit formation by interfering with the correlated wave. In the present study, we tested this hypothesis by examining the effects of nicotine on the correlated activity and assessing the chronic action of nicotine in ovo on functional synaptic expression along the vagal sensory pathway. In ovo observations of chick embryo behavior and electrical recording using in vitro preparations showed that the application of nicotine transiently increased embryonic movements and electrical bursts associated with the wave, but subsequently inhibited these activities, suggesting that the dominant action of the drug was to inhibit the wave. Optical imaging with the voltage-sensitive dye showed that the chronic exposure to nicotine in ovo markedly reduced functional synaptic expression in the higher-order sensory nucleus of the vagus nerve, the parabrachial nucleus. The results suggest that prenatal nicotine exposure disrupts the initial formation of the neural circuitry by inhibiting correlated spontaneous wave activity.
Collapse
Key Words
- APV, DL-2-amino-5-phosphonovaleric acid
- CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione
- E, embryonic day (days of incubation in avians and days of pregnancy in mammals)
- EPSP, excitatory postsynaptic potential
- GABA, γ-aminobutyric acid
- In ovo
- NMDA, N-methyl-D-aspartate
- NTS, nucleus of the tractus solitarius
- Nicotine
- Optical recording
- PBN, parabrachial nucleus
- Spontaneous activity
- Synaptic network formation
- Voltage-sensitive dye
- nAChR, nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, 236-8501, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women’s University, Inagi-shi, Tokyo, 206-8511, Japan
| |
Collapse
|
5
|
Driving Neurogenesis in Neural Stem Cells with High Sensitivity Optogenetics. Neuromolecular Med 2019; 22:139-149. [PMID: 31595404 DOI: 10.1007/s12017-019-08573-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/21/2019] [Indexed: 01/15/2023]
Abstract
Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.
Collapse
|
6
|
The Midline Axon Crossing Decision Is Regulated through an Activity-Dependent Mechanism by the NMDA Receptor. eNeuro 2018; 5:eN-NWR-0389-17. [PMID: 29766040 PMCID: PMC5952305 DOI: 10.1523/eneuro.0389-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/03/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic activity-dependent refinement of connections. Midline axon crossing is one of the best studied pathfinding models and is fundamental to the establishment of bilaterally symmetric nervous systems. However, it is not known whether crossing requires intrinsic activity in axons, and what controls that activity. Further, a mechanism linking neuronal activity and gene expression has not been identified for axon pathfinding. Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit (grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a, hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the effects of grin1a loss on midline crossing. By combining pharmacological inhibition of the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we observed rescue of midline crossing. This suggests that the NMDAR controls pathfinding by an activity-dependent mechanism. We further show that the NMDAR may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a known regulator of midline pathfinding. These findings uncover a novel role for the NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as a key link between the genetic and activity-dependent regulation of midline axon guidance.
Collapse
|
7
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Momose-Sato Y, Sato K. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem. Neuroscience 2017; 365:33-47. [PMID: 28951326 DOI: 10.1016/j.neuroscience.2017.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
One of the earliest activities expressed within the developing central nervous system is a widely propagating wave-like activity, which we referred to as the depolarization wave. Despite considerable consensus concerning the global features of the activity, its physiological role is yet to be clarified. The depolarization wave is expressed during a specific period of functional synaptogenesis, and this developmental profile has led to the hypothesis that the wave plays some roles in synaptic network organization. In the present study, we tested this hypothesis by inhibiting the depolarization wave in ovo and examining its effects on the development of functional synapses in vagus nerve-related brainstem nuclei of the chick embryo. Chronic inhibition of the depolarization wave had no significant effect on the developmental time course, amplitude, and spatial distribution of monosynaptic excitatory postsynaptic potentials in the first-order nuclei of the vagal sensory pathway (the nucleus of the tractus solitarius (NTS) and the contralateral non-NTS region), but reduced polysynaptic responses in the higher-order nucleus (the parabrachial nucleus). These results suggest that the depolarization wave plays an important role in the initial process of functional synaptic expression in the brainstem, especially in the higher-order nucleus of the cranial sensory pathway.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan.
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo 206-8511, Japan
| |
Collapse
|
10
|
Kastanenka KV, Hou SS, Shakerdge N, Logan R, Feng D, Wegmann S, Chopra V, Hawkes JM, Chen X, Bacskai BJ. Optogenetic Restoration of Disrupted Slow Oscillations Halts Amyloid Deposition and Restores Calcium Homeostasis in an Animal Model of Alzheimer's Disease. PLoS One 2017; 12:e0170275. [PMID: 28114405 PMCID: PMC5257003 DOI: 10.1371/journal.pone.0170275] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022] Open
Abstract
Slow oscillations are important for consolidation of memory during sleep, and Alzheimer’s disease (AD) patients experience memory disturbances. Thus, we examined slow oscillation activity in an animal model of AD. APP mice exhibit aberrant slow oscillation activity. Aberrant inhibitory activity within the cortical circuit was responsible for slow oscillation dysfunction, since topical application of GABA restored slow oscillations in APP mice. In addition, light activation of channelrhodopsin-2 (ChR2) expressed in excitatory cortical neurons restored slow oscillations by synchronizing neuronal activity. Driving slow oscillation activity with ChR2 halted amyloid plaque deposition and prevented calcium overload associated with this pathology. Thus, targeting slow oscillatory activity in AD patients might prevent neurodegenerative phenotypes and slow disease progression.
Collapse
Affiliation(s)
- Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
- * E-mail: (BJB); (KVK)
| | - Steven S. Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Naomi Shakerdge
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Robert Logan
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Danielle Feng
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Susanne Wegmann
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Vanita Chopra
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Jonathan M. Hawkes
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Xiqun Chen
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Brian J. Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
- * E-mail: (BJB); (KVK)
| |
Collapse
|
11
|
Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stüttgen MC, Kirischuk S, Kilb W. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front Neural Circuits 2016; 10:40. [PMID: 27252626 PMCID: PMC4877528 DOI: 10.3389/fncir.2016.00040] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| |
Collapse
|
12
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|
13
|
Sharp AA. Sensory regulation of spontaneous limb movements in the midstage embryonic chick. Dev Psychobiol 2015; 57:385-96. [PMID: 25808105 DOI: 10.1002/dev.21292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly apparent that somatosensation plays an important role in regulating prenatal movement and developmental plasticity. Numerous studies performed on embryonic chicks and perinatal rats are beginning to implicate proprioception to be particularly important in modulating motility very soon after afferent connections are made in the spinal cord. In this report, we demonstrate new approaches in the chick embryo to explore the role of sensation in modulating embryonic movement. Force recordings from the legs of chick embryos on E9 and E11, during spontaneous motility, demonstrate changes in sensory regulation consistent with the concept that sensory regulation is functioning one day after sensory synapse formation and that the complexity of this regulation increases by E11. Additionally, we present new video data showing activation of embryonic motility on E5 and E9 in embryos expressing channelrhodopsin in the spinal cord as a novel way to approach the issues of sensorimotor development.
Collapse
Affiliation(s)
- Andrew A Sharp
- Departmentof Anatomy, Southern Illinois University School of Medicine, Carbondale, IL; Center for Integrated Research and Cognitive Neural Science, Southern Illinois University, Carbondale, IL
| |
Collapse
|
14
|
Li J, Kritzer E, Ford NC, Arbabi S, Baccei ML. Connectivity of pacemaker neurons in the neonatal rat superficial dorsal horn. J Comp Neurol 2015; 523:1038-1053. [PMID: 25380417 DOI: 10.1002/cne.23706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023]
Abstract
Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations that are targeted by pacemaker axons have yet to be identified. The present study combines patch-clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic pseudorabies virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. Whereas small pacemaker neurons possessed ramified axons that contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons that crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-periaqueductal gray neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits and the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the central nervous system.
Collapse
Affiliation(s)
- Jie Li
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati OH 45267
| | - Elizabeth Kritzer
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati OH 45267
| | - Neil C Ford
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati OH 45267.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati OH 45267
| | - Shahriar Arbabi
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati OH 45267
| | - Mark L Baccei
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati OH 45267.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati OH 45267
| |
Collapse
|
15
|
Friedmann D, Hoagland A, Berlin S, Isacoff EY. A spinal opsin controls early neural activity and drives a behavioral light response. Curr Biol 2014; 25:69-74. [PMID: 25484291 DOI: 10.1016/j.cub.2014.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/04/2023]
Abstract
Nonvisual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors. However, the expression of opsins in multiple other brain structures suggests a more expansive repertoire for light regulation of physiology, behavior, and development. Translucent zebrafish embryos express extraretinal opsins early on, at a time when spontaneous activity in the developing CNS plays a role in neuronal maturation and circuit formation. Though the presence of extraretinal opsins is well documented, the function of direct photoreception by the CNS remains largely unknown. Here, we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photosensitivity of this circuit is conferred by vertebrate ancient long opsin A (VALopA), which we show to be a Gα(i)-coupled receptor that is expressed in the neurons of the spinal network. Sustained photoactivation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for nonvisual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs.
Collapse
Affiliation(s)
- Drew Friedmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Abstract
In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages.
Collapse
Affiliation(s)
- Chris Law
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Michel Paquet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
- Departments of Anatomy and Cell Biology, and Biology, Division of Experimental Medicine, McGill University Montréal, Montréal, Canada, and Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
17
|
Can simple rules control development of a pioneer vertebrate neuronal network generating behavior? J Neurosci 2014; 34:608-21. [PMID: 24403159 DOI: 10.1523/jneurosci.3248-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
Collapse
|
18
|
Kirkby LA, Sack GS, Firl A, Feller MB. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 2014; 80:1129-44. [PMID: 24314725 DOI: 10.1016/j.neuron.2013.10.030] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Before the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete. In this review, we discuss recent experimental and theoretical progress toward the process of activity-dependent refinement, focusing on circuits in the visual, auditory, and motor systems. Although many outstanding questions remain, the combination of several novel approaches has brought us closer to a comprehensive understanding of how complex neural circuits are established by patterned spontaneous activity during development.
Collapse
Affiliation(s)
- Lowry A Kirkby
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Classic studies have proposed that genetically encoded programs and spontaneous activity play complementary but independent roles in the development of neural circuits. Recent evidence, however, suggests that these two mechanisms could interact extensively, with spontaneous activity affecting the expression and function of guidance molecules at early developmental stages. Here, using the developing chick spinal cord and the mouse visual system to ectopically express the inwardly rectifying potassium channel Kir2.1 in individual embryonic neurons, we demonstrate that cell-intrinsic blockade of spontaneous activity in vivo does not affect neuronal identity specification, axon pathfinding, or EphA/ephrinA signaling during the development of topographic maps. However, intrinsic spontaneous activity is critical for axon branching and pruning once axonal growth cones reach their correct topographic position in the target tissues. Our experiments argue for the dissociation of spontaneous activity from hard-wired developmental programs in early phases of neural circuit formation.
Collapse
|
20
|
Optogenetic-mediated increases in in vivo spontaneous activity disrupt pool-specific but not dorsal-ventral motoneuron pathfinding. Proc Natl Acad Sci U S A 2013; 110:17528-33. [PMID: 24101487 DOI: 10.1073/pnas.1316457110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhythmic waves of spontaneous electrical activity are widespread in the developing nervous systems of birds and mammals, and although many aspects of neural development are activity-dependent, it has been unclear if rhythmic waves are required for in vivo motor circuit development, including the proper targeting of motoneurons to muscles. We show here that electroporated channelrhodopsin-2 can be activated in ovo with light flashes to drive waves at precise intervals of approximately twice the control frequency in intact chicken embryos. Optical monitoring of associated axial movements ensured that the altered frequency was maintained. In embryos thus stimulated, motor axons correctly executed the binary dorsal-ventral pathfinding decision but failed to make the subsequent pool-specific decision to target to appropriate muscles. This observation, together with the previous demonstration that slowing the frequency by half perturbed dorsal-ventral but not pool-specific pathfinding, shows that modest changes in frequency differentially disrupt these two major pathfinding decisions. Thus, many drugs known to alter early rhythmic activity have the potential to impair normal motor circuit development, and given the conservation between mouse and avian spinal cords, our observations are likely relevant to mammals, where such studies would be difficult to carry out.
Collapse
|
21
|
Momose-Sato Y, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci 2013; 7:36. [PMID: 23596392 PMCID: PMC3625830 DOI: 10.3389/fncel.2013.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca(2+)- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin UniversityYokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's UniversityTokyo, Japan
| |
Collapse
|
22
|
Yawo H, Asano T, Sakai S, Ishizuka T. Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 2013; 55:474-90. [PMID: 23550617 DOI: 10.1111/dgd.12053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
Abstract
Optogenetic manipulation of the neuronal activity enables one to analyze the neuronal network both in vivo and in vitro with precise spatio-temporal resolution. Channelrhodopsins (ChRs) are light-sensitive cation channels that depolarize the cell membrane, whereas halorhodopsins and archaerhodopsins are light-sensitive Cl(-) and H(+) transporters, respectively, that hyperpolarize it when exogenously expressed. The cause-effect relationship between a neuron and its function in the brain is thus bi-directionally investigated with evidence of necessity and sufficiency. In this review we discuss the potential of optogenetics with a focus on three major requirements for its application: (i) selection of the light-sensitive proteins optimal for optogenetic investigation, (ii) targeted expression of these selected proteins in a specific group of neurons, and (iii) targeted irradiation with high spatiotemporal resolution. We also discuss recent progress in the application of optogenetics to studies of non-neural cells such as glial cells, cardiac and skeletal myocytes. In combination with stem cell technology, optogenetics may be key to successful research using embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) derived from human patients through optical regulation of differentiation-maturation, through optical manipulation of tissue transplants and, furthermore, through facilitating survival and integration of transplants.
Collapse
Affiliation(s)
- Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | | | | | | |
Collapse
|
23
|
Subramanian N, Wetzel A, Dombert B, Yadav P, Havlicek S, Jablonka S, Nassar MA, Blum R, Sendtner M. Role of Nav1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet 2012; 21:3655-67. [DOI: 10.1093/hmg/dds195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Demarque M, Spitzer NC. Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol 2012; 72:22-32. [PMID: 21557513 DOI: 10.1002/dneu.20909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmitter phenotype of a neuron has long been thought to be stable for the lifespan. Much as eyes have one color and do not change it over time, neurons have been thought to have one neurotransmitter and retain it for their lifetime. Both principles, exclusivity and stability, are challenged by recent data. More and more neurons in different regions of the brain appear to coexpress two or more neurotransmitters. Moreover, the profile of neurotransmitter expression of a given neuron has been shown to change over time, both during development and in response to changes in activity. The present review summarizes recent studies of this neurotransmitter phenotype plasticity (NPP). Homeostatic mechanisms of plasticity are aimed at maintaining the system within a functional range. They appear to be critical for optimal network operations and have been thought to operate largely by regulating intrinsic excitability, synapse number and synaptic strength. NPP provides a new and unexpected level of regulation of network homeostasis. We propose that it provides the basis for NT coexpression and discuss emerging issues and new questions for further studies in coming years.
Collapse
Affiliation(s)
- Michaël Demarque
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
25
|
Borodinsky LN, Belgacem YH, Swapna I. Electrical activity as a developmental regulator in the formation of spinal cord circuits. Curr Opin Neurobiol 2012; 22:624-30. [PMID: 22370142 DOI: 10.1016/j.conb.2012.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Spinal cord development is a complex process involving generation of the appropriate number of cells, acquisition of distinctive phenotypes and establishment of functional connections that enable execution of critical functions such as sensation and locomotion. Here we review the basic cellular events occurring during spinal cord development, highlighting studies that demonstrate the roles of electrical activity in this process. We conclude that the participation of different forms of electrical activity is evident from the beginning of spinal cord development and intermingles with other developmental cues and programs to implement dynamic and integrated control of spinal cord function.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology, and Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA 95819, United States.
| | | | | |
Collapse
|
26
|
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nat Neurosci 2011; 15:298-307. [PMID: 22179110 PMCID: PMC3267873 DOI: 10.1038/nn.3007] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 01/15/2023]
Abstract
Binocular competition is thought to drive eye-specific segregation in the developing visual system, potentially through Hebbian synaptic learning rules that are sensitive to correlations in afferent activity. Altering retinal activity can disrupt eye-specific segregation, but little is known about the temporal features of binocular activity that modulate visual map development. We used optogenetic techniques to directly manipulate retinal activity in vivo and identified a critical period before eye opening in mice when specific binocular features of retinal activity drive visual map development. Synchronous activation of both eyes disrupted segregation, whereas asynchronous stimulation enhanced segregation. The optogenetic stimulus applied was spatially homogenous, and accordingly retinotopy of ipsilateral projections was dramatically perturbed, but contralateral retinotopy was unaffected or even improved. These results provide direct evidence that the synchrony and precise temporal pattern of binocular retinal activity during a critical period in development regulates eye-specific segregation and retinotopy in the developing visual system.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Neurobiology, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
27
|
Zhang J, Ackman JB, Dhande OS, Crair MC. Visualization and manipulation of neural activity in the developing vertebrate nervous system. Front Mol Neurosci 2011; 4:43. [PMID: 22121343 PMCID: PMC3219918 DOI: 10.3389/fnmol.2011.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neural activity during vertebrate development has been unambiguously shown to play a critical role in sculpting circuit formation and function. Patterned neural activity in various parts of the developing nervous system is thought to modulate neurite outgrowth, axon targeting, and synapse refinement. The nature and role of patterned neural activity during development has been classically studied with in vitro preparations using pharmacological manipulations. In this review we discuss newly available and developing molecular-genetic tools for the visualization and manipulation of neural activity patterns specifically during development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - James B. Ackman
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - Onkar S. Dhande
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | | |
Collapse
|
28
|
Sharp AA, Fromherz S. Optogenetic regulation of leg movement in midstage chick embryos through peripheral nerve stimulation. J Neurophysiol 2011; 106:2776-82. [DOI: 10.1152/jn.00712.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous disorders that affect proper development, including the structure and function of the nervous system, are associated with altered embryonic movement. Ongoing challenges are to understand in detail how embryonic movement is generated and to understand better the connection between proper movement and normal nervous system function. Controlled manipulation of embryonic limb movement and neuronal activity to assess short- and long-term outcomes can be difficult. Optogenetics is a powerful new approach to modulate neuronal activity in vivo. In this study, we have used an optogenetics approach to activate peripheral motor axons and thus alter leg motility in the embryonic chick. We used electroporation of a transposon-based expression system to produce ChIEF, a channelrhodopsin-2 variant, in the lumbosacral spinal cord of chick embryos. The transposon-based system allows for stable incorporation of transgenes into the genomic DNA of recipient cells. ChIEF protein is detectable within 24 h of electroporation, largely membrane-localized, and found throughout embryonic development in both central and peripheral processes. The optical clarity of thin embryonic tissue allows detailed innervation patterns of ChIEF-containing motor axons to be visualized in the living embryo in ovo, and pulses of blue light delivered to the thigh can elicit stereotyped flexures of the leg when the embryo is at rest. Continuous illumination can disrupt full extension of the leg during spontaneous movements. Therefore, our results establish an optogenetics approach to alter normal peripheral axon function and to probe the role of movement and neuronal activity in sensorimotor development throughout embryogenesis.
Collapse
Affiliation(s)
- Andrew A. Sharp
- Department of Anatomy and
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois
| | | |
Collapse
|
29
|
Kao TJ, Law C, Kania A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 2011; 23:83-91. [PMID: 22040916 DOI: 10.1016/j.semcdb.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 12/23/2022]
Abstract
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | |
Collapse
|
30
|
Abstract
Many parts of the nervous system become active before development is complete, including the embryonic spinal cord. Remarkably, although the subject has been debated for over a century (Harrison, 1904), it is still unclear whether such activity is required for normal development of motor circuitry. In Drosophila, embryonic motor output is initially poorly organized, and coordinated crawling-like behavior gradually emerges over the subsequent phase of development. We show that reversibly blocking synaptic transmission during this phase severely delays the first appearance of coordinated movements. When we interfere with the pattern of neuronal firing during this period, coordination is also delayed or blocked. We conclude that there is a period during which endogenous patterns of neuronal activity are required for the normal development of motor circuits in Drosophila.
Collapse
|
31
|
|