1
|
Chea M, Bouvier S, Gris JC. The hemostatic system in chronic brain diseases: A new challenging frontier? Thromb Res 2024; 243:109154. [PMID: 39305718 DOI: 10.1016/j.thromres.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Neurological diseases (ND), including neurodegenerative diseases (NDD) and psychiatric disorders (PD), present a significant public health challenge, ranking third in Europe for disability and premature death, following cardiovascular diseases and cancers. In 2017, approximately 540 million cases of ND were reported among Europe's 925 million people, with strokes, dementia, and headaches being most prevalent. Nowadays, more and more evidence highlight the hemostasis critical role in cerebral homeostasis and vascular events. Indeed, hemostasis, thrombosis, and brain abnormalities contributing to ND form a complex and poorly understood equilibrium. Alterations in vascular biology, particularly involving the blood-brain barrier, are implicated in ND, especially dementia, and PD. While the roles of key coagulation players such as thrombin and fibrinogen are established, the roles of other hemostasis components are less clear. Moreover, the involvement of these elements in psychiatric disease pathogenesis is virtually unstudied, except in specific pathological models such as antiphospholipid syndrome. Advanced imaging techniques, primarily functional magnetic resonance imaging and its derivatives like diffusion tensor imaging, have been developed to study brain areas affected by ND and to improve our understanding of the pathophysiology of these diseases. This literature review aims to clarify the current understanding of the connections between hemostasis, thrombosis, and neurological diseases, as well as explore potential future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Chea
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.
| | - Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
2
|
Sun W, Sheng X, Li P, Li R, Guo Z, Lin H, Gong Y. Identification of vilazodone as a novel plasminogen activator inhibitor to overcome Alzheimer's disease through virtual screening, molecular dynamics simulation, and biological evaluation. Arch Pharm (Weinheim) 2024; 357:e2400263. [PMID: 38816779 DOI: 10.1002/ardp.202400263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Urokinase-type plasminogen activator (PLAU), a member of the S1 serine peptidase family in Clan PA, plays a crucial role in the conversion of plasminogen into active plasmin. However, the precise role of PLAU in the central nervous system remains incompletely elucidated, particularly, in relation to Alzheimer's disease (AD). In this study, we successfully identified that PLAU could promote cell senescence in neurons, indicating it as a potential target for AD treatment through a systematic approach, which included both bioinformatics analysis and experimental verification. Subsequently, a structure-based virtual screening approach was employed to identify a potential PLAU inhibitor from the Food and Drug Administration-approved drug database. After analyzing docking scores and thoroughly examining the receptor-ligand complex interaction modes, vilazodone emerges as a highly promising PLAU inhibitor. Additionally, molecular docking and molecular dynamics simulations were performed to generate a complex structure between the relatively stable inhibitor vilazodone and PLAU. Of note, vilazodone exhibited superior cytotoxicity against senescent cells, showing a senolytic activity through targeting PLAU and ultimately producing an anti-AD effect. These findings suggest that targeting PLAU could represent a promising therapeutic strategy for AD. Furthermore, investigating the inhibitory potential and structural modifications based on vilazodone may provide valuable insights for future drug development targeting PLAU in AD disorders.
Collapse
Affiliation(s)
- Wenxiu Sun
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Sheng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiru Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runwu Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihe Guo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yuesong Gong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Rodriguez G, Eren M, Haupfear I, Viola KL, Cline EN, Miyata T, Klein WL, Vaughan DE, Dong H. Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice. Psychopharmacology (Berl) 2023; 240:2641-2655. [PMID: 37700086 DOI: 10.1007/s00213-023-06459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RATIONALE Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aβ levels and plaque deposition in APP/PS1 mice. METHODS We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.
Collapse
Affiliation(s)
- Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - William L Klein
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Hao Y, Li C, Wang H, Ming C. Effects of copy number variations on longevity in late-onset Alzheimer's disease patients: insights from a causality network analysis. Front Aging Neurosci 2023; 15:1241412. [PMID: 38020759 PMCID: PMC10652415 DOI: 10.3389/fnagi.2023.1241412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD), particularly late-onset Alzheimer's disease (LOAD), is a prevalent form of dementia that significantly affects patients' cognitive and behavioral capacities and longevity. Although approximately 70 genetic risk factors linked with AD have been identified, their influence on patient longevity remains unclear. Further, recent studies have associated copy number variations (CNVs) with the longevity of healthy individuals and immune-related pathways in AD patients. This study aims to investigate the role of CNVs on the longevity of AD patients by integrating the Whole Genome Sequencing (WGS) and transcriptomics data from the Religious Orders Study/Memory and Aging Project (ROSMAP) cohort through causality network inference. Our comprehensive analysis led to the construction of a CNV-Gene-Age of Death (AOD) causality network. We successfully identified three key CNVs (DEL5006, mCNV14192, and DUP42180) and seven AD-longevity causal genes (PLGRKT, TLR1, PLAU, CALB2, SYTL2, OTOF, and NT5DC1) impacting AD patient longevity, independent of disease severity. This outcome emphasizes the potential role of plasminogen activation and chemotaxis in longevity. We propose several hypotheses regarding the role of identified CNVs and the plasminogen system on patient longevity. However, experimental validation is required to further corroborate these findings and uncover precise mechanisms. Despite these limitations, our study offers promising insights into the genetic influence on AD patient longevity and contributes to paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Yanan Hao
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - Chuhao Li
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
5
|
Dong W, Huang Y. Common Genetic Factors and Pathways in Alzheimer's Disease and Ischemic Stroke: Evidences from GWAS. Genes (Basel) 2023; 14:353. [PMID: 36833280 PMCID: PMC9957001 DOI: 10.3390/genes14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) and ischemic stroke (IS) are common neurological disorders, and the comorbidity of these two brain diseases is often seen. Although AD and IS were regarded as two distinct disease entities, in terms of different etiologies and clinical presentation, recent genome-wide association studies (GWASs) revealed that there were common risk genes between AD and IS, indicating common molecular pathways and their common pathophysiology. In this review, we summarize AD and IS risk single nucleotide polymorphisms (SNPs) and their representative genes from the GWAS Catalog database, and find thirteen common risk genes, but no common risk SNPs. Furthermore, the common molecular pathways associated with these risk gene products are summarized from the GeneCards database and clustered into inflammation and immunity, G protein-coupled receptor, and signal transduction. At least seven of these thirteen genes can be regulated by 23 microRNAs identified from the TargetScan database. Taken together, the imbalance of these molecular pathways may give rise to these two common brain disorders. This review sheds light on the pathogenesis of comorbidity of AD and IS, and provides molecular targets for disease prevention, manipulation, and brain health maintenance.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Yepes M. The uPA/uPAR system in astrocytic wound healing. Neural Regen Res 2022; 17:2404-2406. [PMID: 35535878 PMCID: PMC9120704 DOI: 10.4103/1673-5374.338991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022] Open
Abstract
The repair of injured tissue is a highly complex process that involves cell proliferation, differentiation, and migration. Cell migration requires the dismantling of intercellular contacts in the injured zone and their subsequent reconstitution in the wounded area. Urokinase-type plasminogen activator (uPA) is a serine proteinase found in multiple cell types including endothelial cells, smooth muscle cells, monocytes, and macrophages. A substantial body of experimental evidence with different cell types outside the central nervous system indicates that the binding of uPA to its receptor (uPAR) on the cell surface prompts cell migration by inducing plasmin-mediated degradation of the extracellular matrix. In contrast, although uPA and uPAR are abundantly found in astrocytes and uPA binding to uPAR triggers astrocytic activation, it is unknown if uPA also plays a role in astrocytic migration. Neuronal cadherin is a member of cell adhesion proteins pivotal for the formation of cell-cell contacts between astrocytes. More specifically, while the extracellular domain of neuronal cadherin interacts with the extracellular domain of neuronal cadherin in neighboring cells, its intracellular domain binds to β-catenin, which in turn links the complex to the actin cytoskeleton. Glycogen synthase kinase 3β is a serine-threonine kinase that prevents the cytoplasmic accumulation of β-catenin by inducing its phosphorylation at Ser33, Ser37, and Ser41, thus activating a sequence of events that lead to its proteasomal degradation. The data discussed in this perspective indicate that astrocytes release uPA following a mechanical injury, and that binding of this uPA to uPAR on the cell membrane induces the detachment of β-catenin from the intracellular domain of neuronal cadherin by triggering its extracellular signal-regulated kinase 1/2-mediated phosphorylation at Tyr650. Remarkably, this is followed by the cytoplasmic accumulation of β-catenin because uPA-induced extracellular signal-regulated kinase 1/2 activation also phosphorylates lipoprotein receptor-related protein 6 at Ser1490, which in turn, by recruiting glycogen synthase kinase 3β to its intracellular domain abrogates its effect on β-catenin. The cytoplasmic accumulation of β-catenin is followed by its nuclear translocation, where it induces the expression of uPAR, which is required for the migration of astrocytes from the injured edge into the wounded area.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
7
|
Diaz A, Martin-Jimenez C, Woo Y, Merino P, Torre E, Yepes M. Urokinase-Type Plasminogen Activator Triggers Wingless/Int1-Independent Phosphorylation of the Low-Density Lipoprotein Receptor-Related Protein-6 in Cerebral Cortical Neurons. J Alzheimers Dis 2022; 89:877-891. [PMID: 35964187 DOI: 10.3233/jad-220320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Urokinase-type plasminogen activator (uPA) is a serine proteinase found in excitatory synapses located in the II/III and V cortical layers. The synaptic release of uPA promotes the formation of synaptic contacts and the repair of synapses damaged by various forms of injury, and its abundance is decreased in the synapse of Alzheimer's disease (AD) patients. Inactivation of the Wingless/Int1 (Wnt)-β-catenin pathway plays a central role in the pathogenesis of AD. Soluble amyloid-β (Aβ) prevents the phosphorylation of the low-density lipoprotein receptor-related protein-6 (LRP6), and the resultant inactivation of the Wnt-β-catenin pathway prompts the amyloidogenic processing of the amyloid-β protein precursor (AβPP) and causes synaptic loss. OBJECTIVE To study the role of neuronal uPA in the pathogenesis of AD. METHODS We used in vitro cultures of murine cerebral cortical neurons, a murine neuroblastoma cell line transfected with the APP-695 Swedish mutation (N2asw), and mice deficient on either plasminogen, or uPA, or its receptor (uPAR). RESULTS We show that uPA activates the Wnt-β-catenin pathway in cerebral cortical neurons by triggering the phosphorylation of LRP6 via a plasmin-independent mechanism that does not require binding of Wnt ligands (Wnts). Our data indicate that uPA-induced activation of the Wnt-β-catenin pathway protects the synapse from the harmful effects of soluble Aβ and prevents the amyloidogenic processing of AβPP by inhibiting the expression of β-secretase 1 (BACE1) and the ensuing generation of Aβ 40 and Aβ 42 peptides. CONCLUSION uPA protects the synapse and antagonizes the inhibitory effect of soluble Aβ on the Wnt-β-catenin pathway by providing an alternative pathway for LRP6 phosphorylation and β-catenin stabilization.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
8
|
Tang MY, Gorin FA, Lein PJ. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. AGEING AND NEURODEGENERATIVE DISEASES 2022; 2. [PMID: 35156107 PMCID: PMC8830591 DOI: 10.20517/and.2022.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune response has emerged as an important contributor to the chronic neuroinflammation associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS is better known for its peripheral functions, components of the PAS are expressed in the brain and have been demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss therapeutic implications of these observations.
Collapse
Affiliation(s)
- Mei-Yun Tang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.,Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Diaz A, Merino P, McCann P, Yepes MA, Quiceno LG, Torre E, Tomkins A, Zhang X, Hales CM, Tong FC, Yepes M. Urokinase-type plasminogen activator promotes N-cadherin-mediated synaptic recovery in the ischemic brain. J Cereb Blood Flow Metab 2021; 41:2381-2394. [PMID: 33757316 PMCID: PMC8393294 DOI: 10.1177/0271678x211002297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is a serine proteinase that catalyzes the generation of plasmin on the cell surface and activates cell signaling pathways that promote remodeling and repair. Neuronal cadherin (NCAD) is a transmembrane protein that in the mature brain mediates the formation of synaptic contacts in the II/III and V cortical layers. Our studies show that uPA is preferentially found in the II/III and V cortical laminae of the gyrencephalic cortex of the non-human primate. Furthermore, we found that in murine cerebral cortical neurons and induced pluripotent stem cell (iPSC)-derived neurons prepared from healthy human donors, most of this uPA is associated with pre-synaptic vesicles. Our in vivo experiments revealed that in both, the gyrencephalic cortex of the non-human primate and the lissecephalic murine brain, cerebral ischemia decreases the number of intact synaptic contacts and the expression of uPA and NCAD in a band of tissue surrounding the necrotic core. Additionally, our in vitro data show that uPA induces the synthesis of NCAD in cerebral cortical neurons, and in line with these observations, intravenous treatment with recombinant uPA three hours after the onset of cerebral ischemia induces NCAD-mediated repair of synaptic contacts in the area surrounding the necrotic core.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel A Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura G Quiceno
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Amelia Tomkins
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Xiaodong Zhang
- Imaging Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Chadwick M Hales
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Frank C Tong
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
- Manuel Yepes, Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Road-NE, Atlanta, GA 30329-4208, USA.
| |
Collapse
|
10
|
Diaz A, Martin-Jimenez C, Xu Y, Merino P, Woo Y, Torre E, Yepes M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J Cell Sci 2021; 134:jcs255919. [PMID: 34085693 PMCID: PMC8214757 DOI: 10.1242/jcs.255919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. β-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of β-catenin from cadherins, and β-catenin is then degraded by the proteasome following its phosphorylation by GSK3β. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of β-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of β-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3β. Our work indicates that the ensuing cytoplasmic accumulation of β-catenin is followed by its nuclear translocation and β-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yang Xu
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
11
|
Ziliotto N, Bernardi F, Piazza F. Hemostasis components in cerebral amyloid angiopathy and Alzheimer's disease. Neurol Sci 2021; 42:3177-3188. [PMID: 34041636 DOI: 10.1007/s10072-021-05327-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023]
Abstract
Increased cerebrovascular amyloid-β (Aβ) deposition represents the main pathogenic mechanisms characterizing Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Whereas an increasing number of studies define the contribution of fibrin(ogen) to neurodegeneration, how other hemostasis factors might be pleiotropically involved in the AD and CAA remains overlooked. Although traditionally regarded as pertaining to hemostasis, these proteins are also modulators of inflammation and angiogenesis, and exert cytoprotective functions. This review discusses the contribution of hemostasis components to Aβ cerebrovascular deposition, which settle the way to endothelial and blood-brain barrier dysfunction, vessel fragility, cerebral bleeding, and the associated cognitive changes. From the primary hemostasis, the process that refers to platelet aggregation, we discuss evidence regarding the von Willebrand factor (vWF) and its regulator ADAMTS13. Then, from the secondary hemostasis, we focus on tissue factor, which triggers the extrinsic coagulation cascade, and on the main inhibitors of coagulation, i.e., tissue factor pathway inhibitor (TFPI), and the components of protein C pathway. Last, from the tertiary hemostasis, we discuss evidence on FXIII, involved in fibrin cross-linking, and on components of fibrinolysis, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor uPA(R), and plasminogen activator inhibitor-1 (PAI-1). Increased knowledge on contributors of Aβ-related disease progression may favor new therapeutic approaches for early modifiable risk factors.
Collapse
Affiliation(s)
- Nicole Ziliotto
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy.
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
12
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
13
|
Tzekaki EE, Tsolaki M, Pantazaki ΑA, Geromichalos G, Lazarou E, Kozori M, Sinakos Z. The pleiotropic beneficial intervention of olive oil intake on the Alzheimer's disease onset via fibrinolytic system. Exp Gerontol 2021; 150:111344. [PMID: 33836262 DOI: 10.1016/j.exger.2021.111344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The daily consumption of Extra Virgin Olive Oil (EVOO) in Mediterranean nutrition is tightly associated with lower frequency of many diseases' appearance, including Alzheimer's disease (AD). Fibrinolytic system is already assumed to be involved in AD pathophysiology through various factors, especially plasminogen activator inhibitor-1 (PAI-1), a2-antiplasmin (α2ΑP) and tissue plasminogen activator (tPA). We, here, present a biochemical study, as a continuation of a clinical trial of a cohort of 84 participants, focusing on the pleiotropic effect of the annual EVOO consumption on the fibrinolytic factors of Mild Cognitive Impairment (MCI) patients. The levels of all these fibrinolytic factors, measured by Enzyme-Linked Immunosorbent Assay (ELISA) method, were reduced in the serum of MCI patients annually administered with EVOO, versus not treated MCI patients, as well as AD patients. The well-established AD hallmarks (Aβ1-40 and Aβ1-42 species, tau, and p-tau) of MCI patients' group, annually administered with EVOO, were restored to levels equal to those of the cognitively-healthy group; in contrast to those patients not being administered, and their AD hallmarks levels increased at the end of the year. Moreover, one of the EVOO annual consumption multimodal effects on the MCI patients focused on the levels of an oxidative stress trademark, malondialdehyde (MDA), which displayed also a visible quenching; On the other hand, an increase exhibited in the MCI patients not consuming EVOO one year after, was attributed to the lack of the EVOO anti-oxidative properties. These outcomes are exploitable towards the establishment of natural products like EVOO, as a preventive remedy fighting this neurodegenerative disorder, AD. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996 MICOIL gov Identifier: NCT03362996.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- 1(st) Department of Neurology, Medical School, "AHEPA" General Hospital Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, 54124 Thessaloniki, Makedonia, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece.
| | - Αnastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece.
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Eftychia Lazarou
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Mahi Kozori
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Zacharias Sinakos
- Emeritus Professor of Hematology, Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, Greece
| |
Collapse
|
14
|
Diaz A, Torre E, Yepes M. Preparation of Synaptoneurosomes to Study the Synapse in the Murine Cerebral Cortex. Bio Protoc 2021; 11:e3896. [PMID: 33732785 DOI: 10.21769/bioprotoc.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 11/02/2022] Open
Abstract
The synapse is a complex structure where the transmission of information takes place. Synaptic dysfunction is one of the earliest pathophysiological events in several diseases, such as traumatic brain injury, cerebral ischemia, and neurodegenerative diseases. Thus, a methodology to study synaptic structure and function is crucial for the development of potential strategies for the treatment of many neurological diseases. Synaptoneurosomes (SNs) are structures assembled by the sealed presynaptic bouton and the attached post-synaptic density. Despite the fact that for a long time it has been recognized that SNs are a powerful tool to study synaptic function, composition, and structure, its use has been limited by the requirement of relatively large amounts of material to successfully isolate them. Here we describe a three-step centrifugation procedure performed under hypotonic conditions to isolate SNs from small volumes of the cerebral cortex. Graphic abstract: Schematic flowchart for the preparation of synaptoneurosomes.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA; USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA; USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA; USA.,Department of Neurology, Emory University, Atlanta, GA; USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA; USA
| |
Collapse
|
15
|
Abstract
Dementia is a clinical syndrome that affects approximately 47 million people worldwide and is characterized by progressive and irreversible decline of cognitive, behavioral and sesorimotor functions. Alzheimer's disease (AD) accounts for approximately 60-80% of all cases of dementia, and neuropathologically is characterized by extracellular deposits of insoluble amyloid-β (Aβ) and intracellular aggregates of hyperphosphorylated tau. Significantly, although for a long time it was believed that the extracellular accumulation of Aβ was the culprit of the symptoms observed in these patients, more recent studies have shown that cognitive decline in people suffering this disease is associated with soluble Aβ-induced synaptic dysfunction instead of the formation of insoluble Aβ-containing extracellular plaques. These observations are translationally relevant because soluble Aβ-induced synaptic dysfunction is an early event in AD that precedes neuronal death, and thus is amenable to therapeutic interventions to prevent cognitive decline before the progression to irreversible brain damage. The plasminogen activating (PA) system is an enzymatic cascade that triggers the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Experimental evidence reported over the last three decades has shown that tPA and uPA play a role in the pathogenesis of AD. However, these studies have focused on the ability of these plasminogen activators to trigger plasmin-induced cleavage of insoluble Aβ-containing extracellular plaques. In contrast, recent evidence indicates that activity-dependent release of uPA from the presynaptic terminal of cerebral cortical neurons protects the synapse from the deleterious effects of soluble Aβ via a mechanism that does not require plasmin generation or the cleavage of Aβ fibrils. Below we discuss the role of the PA system in the pathogenesis of AD and the translational relevance of data published to this date.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University School of Medicine; Department of Neurology, Veterans Affairs Medical Center; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
16
|
Zhang T, Tian C, Wu J, Zhang Y, Wang J, Kong Q, Mu L, Sun B, Ai T, Wang Y, Zhao W, Wang D, Li H, Wang G. MicroRNA-182 exacerbates blood-brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia. FASEB J 2020; 34:13762-13775. [PMID: 32808351 DOI: 10.1096/fj.201903092r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia causes damage to the structure and function of the blood-brain barrier (BBB) and alleviating BBB destruction will be of great significance for the treatment and prognosis of ischemic stroke. Recently, microRNAs have been shown to play a critical role in BBB integrity. However, the potential mechanism by which microRNA-182 (miR-182) affects the BBB in ischemic stroke remains unclear. We demonstrated for the first time that cerebral ischemia leads to a significant progressive increase in miR-182 after pMCAO, and bEnd.3 cells are the primary target cells of miR-182. In miR-182 KD transgenic mice, infarct volume, and BBB permeability were attenuated, and tight junction (TJ) proteins increased. Inhibition of miR-182 with an antagomir reduced OGD-induced apoptosis of bEnd.3 cells and the loss of ZO-1 and Occludin. To further explore the mechanism by which miR-182 regulates BBB integrity, we detected the apoptotic proteins Bcl-2/Bax and demonstrated that mTOR and FOXO1 were the targets of miR-182. Inhibition of mTOR/FOXO1 by rapamycin/AS1842856 decreased the ratio of Bcl-2/Bax and exacerbated TJ protein loss. Taken together, inhibition of miR-182 protects BBB integrity by reducing endothelial cell apoptosis through the mTOR/FOXO1 pathway. Thus, miR-182 may be a potential target for the treatment of BBB disruption during cerebral ischemia.
Collapse
Affiliation(s)
- Tongshuai Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, China.,Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Chao Tian
- Department of Neurobiology, Harbin Medical University, Harbin, China.,School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jinrong Wu
- Department of Neurobiology, Harbin Medical University, Harbin, China.,Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Tianhong Ai
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Dandan Wang
- Wu Lian De Memorial Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, China.,Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China.,Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| |
Collapse
|