1
|
Cohen O, Kahan A, Steinberg I, Malinowski ST, Rokni D, Spehr M, Ben-Shaul Y. Stimulus-Induced Theta-Band LFP Oscillations Format Neuronal Representations of Social Chemosignals in the Mouse Accessory Olfactory Bulb. J Neurosci 2023; 43:8700-8722. [PMID: 37903594 PMCID: PMC10727196 DOI: 10.1523/jneurosci.1055-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.
Collapse
Affiliation(s)
- Oksana Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anat Kahan
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Idan Steinberg
- Alpha Program, Future Scientist Center, The Hebrew University Youth Division, Jerusalem 9190401, Israel
| | - Sebastian T Malinowski
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Dan Rokni
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
2
|
Megwa OF, Pascual LM, Günay C, Pulver SR, Prinz AA. Temporal dynamics of Na/K pump mediated memory traces: insights from conductance-based models of Drosophila neurons. Front Neurosci 2023; 17:1154549. [PMID: 37284663 PMCID: PMC10239822 DOI: 10.3389/fnins.2023.1154549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023] Open
Abstract
Sodium potassium ATPases (Na/K pumps) mediate long-lasting, dynamic cellular memories that can last tens of seconds. The mechanisms controlling the dynamics of this type of cellular memory are not well understood and can be counterintuitive. Here, we use computational modeling to examine how Na/K pumps and the ion concentration dynamics they influence shape cellular excitability. In a Drosophila larval motor neuron model, we incorporate a Na/K pump, a dynamic intracellular Na+ concentration, and a dynamic Na+ reversal potential. We probe neuronal excitability with a variety of stimuli, including step currents, ramp currents, and zap currents, then monitor the sub- and suprathreshold voltage responses on a range of time scales. We find that the interactions of a Na+-dependent pump current with a dynamic Na+ concentration and reversal potential endow the neuron with rich response properties that are absent when the role of the pump is reduced to the maintenance of constant ion concentration gradients. In particular, these dynamic pump-Na+ interactions contribute to spike rate adaptation and result in long-lasting excitability changes after spiking and even after sub-threshold voltage fluctuations on multiple time scales. We further show that modulation of pump properties can profoundly alter a neuron's spontaneous activity and response to stimuli by providing a mechanism for bursting oscillations. Our work has implications for experimental studies and computational modeling of the role of Na/K pumps in neuronal activity, information processing in neural circuits, and the neural control of animal behavior.
Collapse
Affiliation(s)
- Obinna F. Megwa
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Cengiz Günay
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Astrid A. Prinz
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Zylbertal A, Bianco IH. Recurrent network interactions explain tectal response variability and experience-dependent behavior. eLife 2023; 12:78381. [PMID: 36943029 PMCID: PMC10030118 DOI: 10.7554/elife.78381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Response variability is an essential and universal feature of sensory processing and behavior. It arises from fluctuations in the internal state of the brain, which modulate how sensory information is represented and transformed to guide behavioral actions. In part, brain state is shaped by recent network activity, fed back through recurrent connections to modulate neuronal excitability. However, the degree to which these interactions influence response variability and the spatial and temporal scales across which they operate, are poorly understood. Here, we combined population recordings and modeling to gain insights into how neuronal activity modulates network state and thereby impacts visually evoked activity and behavior. First, we performed cellular-resolution calcium imaging of the optic tectum to monitor ongoing activity, the pattern of which is both a cause and consequence of changes in network state. We developed a minimal network model incorporating fast, short range, recurrent excitation and long-lasting, activity-dependent suppression that reproduced a hallmark property of tectal activity - intermittent bursting. We next used the model to estimate the excitability state of tectal neurons based on recent activity history and found that this explained a portion of the trial-to-trial variability in visually evoked responses, as well as spatially selective response adaptation. Moreover, these dynamics also predicted behavioral trends such as selective habituation of visually evoked prey-catching. Overall, we demonstrate that a simple recurrent interaction motif can be used to estimate the effect of activity upon the incidental state of a neural network and account for experience-dependent effects on sensory encoding and visually guided behavior.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Interactions among diameter, myelination, and the Na/K pump affect axonal resilience to high-frequency spiking. Proc Natl Acad Sci U S A 2021; 118:2105795118. [PMID: 34353911 PMCID: PMC8364126 DOI: 10.1073/pnas.2105795118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The reliability of spike propagation in axons is determined by complex interactions among ionic currents, ion pumps, and morphological properties. We use compartment-based modeling to reveal that interactions of diameter, myelination, and the Na/K pump determine the reliability of high-frequency spike propagation. By acting as a “reservoir” of nodal Na+ influx, myelinated compartments efficiently increase propagation reliability. Although spike broadening was thought to oppose fast spiking, its effect on spike propagation is complicated, depending on the balance of Na+ channel inactivation gate recovery, Na+ influx, and axial charge. Our findings suggest that slow Na+ removal influences axonal resilience to high-frequency spike propagation and that different strategies may be required to overcome this constraint in different neurons. Axons reliably conduct action potentials between neurons and/or other targets. Axons have widely variable diameters and can be myelinated or unmyelinated. Although the effect of these factors on propagation speed is well studied, how they constrain axonal resilience to high-frequency spiking is incompletely understood. Maximal firing frequencies range from ∼1 Hz to >300 Hz across neurons, but the process by which Na/K pumps counteract Na+ influx is slow, and the extent to which slow Na+ removal is compatible with high-frequency spiking is unclear. Modeling the process of Na+ removal shows that large-diameter axons are more resilient to high-frequency spikes than are small-diameter axons, because of their slow Na+ accumulation. In myelinated axons, the myelinated compartments between nodes of Ranvier act as a “reservoir” to slow Na+ accumulation and increase the reliability of axonal propagation. We now find that slowing the activation of K+ current can increase the Na+ influx rate, and the effect of minimizing the overlap between Na+ and K+ currents on spike propagation resilience depends on complex interactions among diameter, myelination, and the Na/K pump density. Our results suggest that, in neurons with different channel gating kinetic parameters, different strategies may be required to improve the reliability of axonal propagation.
Collapse
|
5
|
Yuan Q, Xu J, Chen H. Dynamics Analysis of Firing Patterns in Pre-Bötzinger Complex Neurons Model. Front Comput Neurosci 2021; 15:591037. [PMID: 34211383 PMCID: PMC8239244 DOI: 10.3389/fncom.2021.591037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Pre-Bötzinger complex (PBC) neurons located in mammalian brain are the necessary conditions to produce respiratory rhythm, which has been widely verified experimentally and numerically. At present, one of the two different types of bursting mechanisms found in PBC mainly depends on the calcium-activated of non-specific cation current (ICaN). In order to study the influence of ICaN and stimulus current Iexc in PBC inspiratory neurons, a single compartment model was simplified, and firing patterns of the model was discussed by using stability theory, bifurcation analysis, fast, and slow decomposition technology combined with numerical simulation. Under the stimulation of different somatic applied currents, the firing behavior of neurons are studied and exhibit multiple mix bursting patterns, which is helpful to further understand the mechanism of respiratory rhythms of PBC neurons.
Collapse
Affiliation(s)
- Quan Yuan
- School of Mathematics and Information Science, Guangxi University, Guangxi, China
| | - Jieqiong Xu
- School of Mathematics and Information Science, Guangxi University, Guangxi, China
| | - Huiying Chen
- School of Mathematics and Information Science, Guangxi University, Guangxi, China
| |
Collapse
|
6
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Synchronous Infra-Slow Oscillations Organize Ensembles of Accessory Olfactory Bulb Projection Neurons into Distinct Microcircuits. J Neurosci 2020; 40:4203-4218. [PMID: 32312886 PMCID: PMC7244196 DOI: 10.1523/jneurosci.2925-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo. We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity. SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo. Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.
Collapse
|
8
|
Curto C, Morrison K. Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience. Curr Opin Neurobiol 2019; 58:11-20. [PMID: 31319287 DOI: 10.1016/j.conb.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/22/2019] [Indexed: 11/29/2022]
Abstract
We review recent work relating network connectivity to the dynamics of neural activity. While concepts stemming from network science provide a valuable starting point, the interpretation of graph-theoretic structures and measures can be highly dependent on the dynamics associated to the network. Properties that are quite meaningful for linear dynamics, such as random walk and network flow models, may be of limited relevance in the neuroscience setting. Theoretical and computational neuroscience are playing a vital role in understanding the relationship between network connectivity and the nonlinear dynamics associated to neural networks.
Collapse
Affiliation(s)
- Carina Curto
- The Pennsylvania State University, PA 16802, United States.
| | - Katherine Morrison
- School of Mathematical Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| |
Collapse
|
9
|
Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. Proc Natl Acad Sci U S A 2019; 116:15236-15243. [PMID: 31285329 DOI: 10.1073/pnas.1905705116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dopamine neurons of the hypothalamic arcuate nucleus (ARC) tonically inhibit the release of the protein hormone prolactin from lactotropic cells in the anterior pituitary gland and thus play a central role in prolactin homeostasis of the body. Prolactin, in turn, orchestrates numerous important biological functions such as maternal behavior, reproduction, and sexual arousal. Here, we identify the canonical transient receptor potential channel Trpc5 as an essential requirement for normal function of dopamine ARC neurons and prolactin homeostasis. By analyzing female mice carrying targeted mutations in the Trpc5 gene including a conditional Trpc5 deletion, we show that Trpc5 is required for maintaining highly stereotyped infraslow membrane potential oscillations of dopamine ARC neurons. Trpc5 is also required for eliciting prolactin-evoked tonic plateau potentials in these neurons that are part of a regulatory feedback circuit. Trpc5 mutant females show severe prolactin deficiency or hypoprolactinemia that is associated with irregular reproductive cyclicity, gonadotropin imbalance, and impaired reproductive capabilities. These results reveal a previously unknown role for the cation channel Trpc5 in prolactin homeostasis of female mice and provide strategies to explore the genetic basis of reproductive disorders and other malfunctions associated with defective prolactin regulation in humans.
Collapse
|
10
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Holy TE. The Accessory Olfactory System: Innately Specialized or Microcosm of Mammalian Circuitry? Annu Rev Neurosci 2018; 41:501-525. [DOI: 10.1146/annurev-neuro-080317-061916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the accessory olfactory system is a distinct circuit that has received attention for its role in detecting and responding to pheromones. While the neuroscientific investigation of this system is comparatively new, recent advances and its compact size have made it an attractive model for developing an end-to-end understanding of such questions as regulation of essential behaviors, plasticity, and individual recognition. Recent discoveries have indicated a need to reevaluate our conception of this system, suggesting that ( a) physical principles—rather than biological necessity—play an underappreciated role in its raison d'être and that ( b) the anatomy of downstream projections is not dominated by unique specializations but instead consists of an abbreviated cortical/basal ganglia motif reminiscent of other sensorimotor systems. These observations suggest that the accessory olfactory system distinguishes itself primarily by the physicochemical properties of its ligands, but its architecture is otherwise a microcosm of mammalian neurocircuitry.
Collapse
Affiliation(s)
- Timothy E. Holy
- Department of Neuroscience, Washington University, St. Louis, Missouri 63132, USA
| |
Collapse
|
12
|
Temporal Response Properties of Accessory Olfactory Bulb Neurons: Limitations and Opportunities for Decoding. J Neurosci 2018; 38:4957-4976. [PMID: 29712784 DOI: 10.1523/jneurosci.2091-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 01/09/2023] Open
Abstract
The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time.SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake.
Collapse
|
13
|
Spontaneous Infraslow Fluctuations Modulate Hippocampal EPSP-PS Coupling. eNeuro 2018; 5:eN-NWR-0403-17. [PMID: 29349291 PMCID: PMC5771682 DOI: 10.1523/eneuro.0403-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/15/2017] [Indexed: 11/26/2022] Open
Abstract
Extensive trial-to-trial variability is a hallmark of most behavioral, cognitive, and physiological processes. Spontaneous brain activity (SBA), a ubiquitous phenomenon that coordinates levels and patterns of neuronal activity throughout the brain, may contribute to this variability by dynamically altering neuronal excitability. In freely-behaving male rats, we observed extensive variability of the hippocampal evoked response across 28-min recording periods despite maintaining constant stimulation parameters of the medial perforant path. This variability was related to antecedent SBA: increases in low-frequency (0.5–9 Hz) and high-frequency (40.25–100 Hz) band-limited power (BLP) in the 4-s preceding stimulation were associated with decreased slope of the field EPSP (fEPSP) and increased population spike (PS) amplitude. These fluctuations in SBA and evoked response magnitude did not appear stochastic but rather exhibited coordinated activity across infraslow timescales (0.005–0.02 Hz). Specifically, infraslow fluctuations in high- and low-frequency BLP were antiphase with changes in fEPSP slope and in phase with changes in PS amplitude. With these divergent effects on the fEPSP and PS, infraslow SBA ultimately modulates EPSP-PS coupling and thereby enables hippocampal circuitry to generate heterogeneous outputs from identical inputs. Consequently, infraslow SBA appears well suited to dynamically alter sensory selection and information processing and highlights the fundamental role of endogenous neuronal activity for shaping the brain’s response to incoming stimuli.
Collapse
|
14
|
Zylbertal A, Yarom Y, Wagner S. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study. Front Comput Neurosci 2017; 11:85. [PMID: 28970791 PMCID: PMC5609115 DOI: 10.3389/fncom.2017.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 12/02/2022] Open
Abstract
Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of HaifaHaifa, Israel
| |
Collapse
|