1
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
2
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Chadwick W, Maudsley S, Hull W, Havolli E, Boshoff E, Hill MDW, Goetghebeur PJD, Harrison DC, Nizami S, Bedford DC, Coope G, Real K, Thiemermann C, Maycox P, Carlton M, Cole SL. The oDGal Mouse: A Novel, Physiologically Relevant Rodent Model of Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24086953. [PMID: 37108119 PMCID: PMC10138655 DOI: 10.3390/ijms24086953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.
Collapse
Affiliation(s)
- Wayne Chadwick
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2000 Antwerp, Belgium
| | - William Hull
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Centre for Translational Medicine and Therapeutics, Queen Mary University of London, London E1 4NS, UK
| | - Enes Havolli
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Eugene Boshoff
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Mark D W Hill
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | | | - David C Harrison
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Sohaib Nizami
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - David C Bedford
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Gareth Coope
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Katia Real
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Centre for Translational Medicine and Therapeutics, Queen Mary University of London, London E1 4NS, UK
| | - Peter Maycox
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Mark Carlton
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Sarah L Cole
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| |
Collapse
|
4
|
Khan KM, Balasubramanian N, Gaudencio G, Wang R, Selvakumar GP, Kolling L, Pierson S, Tadinada SM, Abel T, Hefti M, Marcinkiewcz CA. Human tau-overexpressing mice recapitulate brainstem involvement and neuropsychiatric features of early Alzheimer's disease. Acta Neuropathol Commun 2023; 11:57. [PMID: 37009893 PMCID: PMC10069039 DOI: 10.1186/s40478-023-01546-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023] Open
Abstract
Alzheimer's disease (AD) poses an ever-increasing public health concern as the population ages, affecting more than 6 million Americans. AD patients present with mood and sleep changes in the prodromal stages that may be partly driven by loss of monoaminergic neurons in the brainstem, but a causal relationship has not been firmly established. This is due in part to a dearth of animal models that recapitulate early AD neuropathology and symptoms. The goal of the present study was to evaluate depressive and anxiety-like behaviors in a mouse model of AD that overexpresses human wild-type tau (htau) prior to the onset of cognitive impairments and assess these behavior changes in relationship to tau pathology, neuroinflammation, and monoaminergic dysregulation in the dorsal raphe nucleus (DRN) and locus coeruleus (LC). We observed depressive-like behaviors at 4 months in both sexes and hyperlocomotion in male htau mice. Deficits in social interaction persisted at 6 months and were accompanied by an increase in anxiety-like behavior in males. The behavioral changes at 4 months coincided with a lower density of serotonergic (5-HT) neurons, downregulation of 5-HT markers, reduced excitability of 5-HT neurons, and hyperphosphorylated tau in the DRN. Inflammatory markers were also upregulated in the DRN along with protein kinases and transglutaminase 2, which may promote tau phosphorylation and aggregation. Loss of 5-HT innervation to the entorhinal cortex and dentate gyrus of the hippocampus was also observed and may have contributed to depressive-like behaviors. There was also reduced expression of noradrenergic markers in the LC along with elevated phospho-tau expression, but this did not translate to a functional change in neuronal excitability. In total, these results suggest that tau pathology in brainstem monoaminergic nuclei and the resulting loss of serotonergic and/or noradrenergic drive may underpin depressive- and anxiety-like behaviors in the early stages of AD.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Nagalakshmi Balasubramanian
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Gabriel Gaudencio
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | | | - Louis Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Samantha Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Satya M Tadinada
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
5
|
Rahman MM, Islam MR, Alam Tumpa MA, Shohag S, Shakil Khan Shuvo, Ferdous J, Kajol SA, Aljohani ASM, Al Abdulmonem W, Rauf A, Thiruvengadam M. Insights into the promising prospect of medicinal chemistry studies against neurodegenerative disorders. Chem Biol Interact 2023; 373:110375. [PMID: 36739931 DOI: 10.1016/j.cbi.2023.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Medicinal chemistry is an interdisciplinary field that incorporates organic chemistry, biochemistry, physical chemistry, pharmacology, informatics, molecular biology, structural biology, cell biology, and other disciplines. Additionally, it considers molecular factors such as the mode of action of the drugs, their chemical structure-activity relationship (SAR), and pharmacokinetic aspects like absorption, distribution, metabolism, elimination, and toxicity. Neurodegenerative disorders (NDs), which are defined by the breakdown of neurons over time, are affecting an increasing number of people. Oxidative stress, particularly the increased production of Reactive Oxygen Species (ROS), plays a crucial role in the growth of various disorders, as indicated by the identification of protein, lipid, and Deoxyribonucleic acid (DNA) oxidation products in vivo. Because of their inherent nature, most biological molecules are vulnerable to ROS, even if they play a role in metabolic parameters and cell signaling. Due to their high polyunsaturated fatty acid content, low antioxidant barrier, and high oxygen uptake, neurons are particularly vulnerable to oxidation by nature. As a result, excessive ROS generation in neurons looks especially harmful, and the mechanisms associated with biomolecule oxidative destruction are several and complex. This review focuses on the formation and management of ROS, as well as their chemical characteristics (both thermodynamic and kinetic), interactions, and implications in NDs.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mst Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saima Akter Kajol
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
6
|
Loppinet E, Besser HA, Sewa AS, Yang FC, Jabri B, Khosla C. LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific T cell antigens. Cell Chem Biol 2023; 30:55-68.e10. [PMID: 36608691 PMCID: PMC9868102 DOI: 10.1016/j.chembiol.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder in which gluten-derived antigens trigger inflammation. Antigenic peptides must undergo site-specific deamidation to be presentable to CD4+ T cells in an HLA-DQ2 or -DQ8 restricted manner. While the biochemical basis for this post-translational modification is understood, its localization in the patient's intestine remains unknown. Here, we describe a mechanism by which gluten peptides undergo deamidation and concentration in the lysosomes of antigen-presenting cells, explaining how the concentration of gluten peptides necessary to elicit an inflammatory response in CeD patients is achieved. A ternary complex forms between a gluten peptide, transglutaminase-2 (TG2), and ubiquitous plasma protein α2-macroglobulin, and is endocytosed by LRP-1. The covalent TG2-peptide adduct undergoes endolysosomal decoupling, yielding the expected deamidated epitope. Our findings invoke a pathogenic role for dendritic cells and/or macrophages in CeD and implicate TG2 in the lysosomal clearance of unwanted self and foreign extracellular proteins.
Collapse
Affiliation(s)
- Elise Loppinet
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnele Sylvia Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fu-Chen Yang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022; 11:cells11030552. [PMID: 35159361 PMCID: PMC8833991 DOI: 10.3390/cells11030552] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are generated through various endogenous and exogenous processes; however, they are neutralized by enzymatic and non-enzymatic antioxidants. An imbalance between the generation and neutralization of oxidants results in the progression to oxidative stress (OS), which in turn gives rise to various diseases, disorders and aging. The characteristics of aging include the progressive loss of function in tissues and organs. The theory of aging explains that age-related functional losses are due to accumulation of reactive oxygen species (ROS), their subsequent damages and tissue deformities. Moreover, the diseases and disorders caused by OS include cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases and cancer. OS, induced by ROS, is neutralized by different enzymatic and non-enzymatic antioxidants and prevents cells, tissues and organs from damage. However, prolonged OS decreases the content of antioxidant status of cells by reducing the activities of reductants and antioxidative enzymes and gives rise to different pathological conditions. Therefore, the aim of the present review is to discuss the mechanism of ROS-induced OS signaling and their age-associated complications mediated through their toxic manifestations in order to devise effective preventive and curative natural therapeutic remedies.
Collapse
|
9
|
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116:102012. [PMID: 34400291 DOI: 10.1016/j.jchemneu.2021.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and others, are characterized by progressive loss of neuronal cells, which causes memory impairment and cognitive decline. Mounting evidence demonstrated the possible implications of diverse biological processes, namely oxidative stress, mitochondrial dysfunction, aberrant cell cycle re-entry, post-translational modifications, protein aggregation, impaired proteasome dysfunction, autophagy, and many others that cause neuronal cell death. The condition worsens as there is no effective treatment for such diseases due to their complex pathogenesis and mechanism. Mounting evidence demonstrated the role of regulatory transcription factors, such as NFκβ, FoxO, Myc, CREB, and others that regulate the biological processes and diminish the disease progression and pathogenesis. Studies demonstrated that forkhead box O (FoxO) transcription factors had been implicated in the regulation of aging and longevity. Further, the functions of FoxO proteins are regulated by different post-translational modifications (PTMs), namely acetylation, and ubiquitination. Various studies concluded that FoxO proteins exert both neuroprotective and neurotoxic properties depending on their regulation mechanism and activity in the brain. Thus, understanding the nature of FoxO expression and activity in the brain will help develop effective therapeutic strategies. Herein, firstly, we discuss the role of FoxO protein in cell cycle regulation and cell proliferation, followed by the regulation of FoxO proteins through acetylation and ubiquitination. We also briefly explain the activity and expression pattern of FoxO proteins in the neuronal cells and explain the mechanism through which FoxO proteins are rescued from oxidative stress-induced neurotoxicity. Later on, we present a detailed view of the implication of FoxO proteins in neurodegenerative disease and FoxO proteins as an effective therapeutic target.
Collapse
Affiliation(s)
- Vaibhav Oli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
10
|
Tripathy D, Migazzi A, Costa F, Roncador A, Gatto P, Fusco F, Boeri L, Albani D, Juárez-Hernández JL, Musio C, Colombo L, Salmona M, Wilhelmus MMM, Drukarch B, Pennuto M, Basso M. Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1-42-mediated toxicity. Neurobiol Dis 2020; 140:104849. [PMID: 32222473 DOI: 10.1016/j.nbd.2020.104849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-β 1-42 (Aβ 1-42). The downstream effects of Aβ 1-42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aβ-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aβ-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Costa
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alessandro Roncador
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Pamela Gatto
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Fusco
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - J Leon Juárez-Hernández
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Carlo Musio
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M M Micha Wilhelmus
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Italy; Department of Biomedical sciences, via Ugo Bassi 58/B, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, 35100 Padova, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy.
| |
Collapse
|
11
|
Cystamine and cysteamine as inhibitors of transglutaminase activity in vivo. Biosci Rep 2018; 38:BSR20180691. [PMID: 30054429 PMCID: PMC6123069 DOI: 10.1042/bsr20180691] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cystamine is commonly used as a transglutaminase inhibitor. This disulphide undergoes reduction in vivo to the aminothiol compound, cysteamine. Thus, the mechanism by which cystamine inhibits transglutaminase activity in vivo could be due to either cystamine or cysteamine, which depends on the local redox environment. Cystamine inactivates transglutaminases by promoting the oxidation of two vicinal cysteine residues on the enzyme to an allosteric disulphide, whereas cysteamine acts as a competitive inhibitor for transamidation reactions catalyzed by this enzyme. The latter mechanism is likely to result in the formation of a unique biomarker, N-(γ-glutamyl)cysteamine that could serve to indicate how cyst(e)amine acts to inhibit transglutaminases inside cells and the body.
Collapse
|
12
|
Min B, Chung KC. New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Rep 2018; 51:5-13. [PMID: 29187283 PMCID: PMC5796628 DOI: 10.5483/bmbrep.2018.51.1.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including amlyoid-β, tau, α-synuclein, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.
Collapse
Affiliation(s)
- Boram Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
13
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
14
|
André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G, Djian P. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis 2017; 101:40-58. [DOI: 10.1016/j.nbd.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
|
15
|
Gaetano Gatta N, Romano R, Fioretti E, Gentile V. Transglutaminase inhibition: possible therapeutic mechanisms to protect cells from death in neurological disorders. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Gaetano Gatta N, Cammarota G, Gentile V. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Kim GH, Kim JE, Rhie SJ, Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol 2015; 24:325-40. [PMID: 26713080 PMCID: PMC4688332 DOI: 10.5607/en.2015.24.4.325] [Citation(s) in RCA: 920] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined.
Collapse
Affiliation(s)
- Geon Ha Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul 03760, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sandy Jeong Rhie
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Serretiello E, Iannaccone M, Titta F, G. Gatta N, Gentile V. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Lee JH, Jeong J, Jeong EM, Cho SY, Kang JW, Lim J, Heo J, Kang H, Kim IG, Shin DM. Endoplasmic reticulum stress activates transglutaminase 2 leading to protein aggregation. Int J Mol Med 2014; 33:849-55. [PMID: 24481335 PMCID: PMC3976127 DOI: 10.3892/ijmm.2014.1640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/28/2014] [Indexed: 01/13/2023] Open
Abstract
Aberrant activation of transglutaminase 2 (TGase2) contributes to a variety of protein conformational disorders such as neurodegenerative diseases and age-related cataracts. The accumulation of improperly folded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), which promotes either repair or degradation of the damaged proteins. Inadequate UPR results in protein aggregation that may contribute to the development of age-related degenerative diseases. TGase2 is a calcium-dependent enzyme that irreversibly modifies proteins by forming cross-linked protein aggregates. Intracellular TGase2 is activated by oxidative stress which generates large quantities of unfolded proteins. However, the relationship between TGase2 activity and UPR has not yet been established. In the present study, we demonstrated that ER stress activated TGase2 in various cell types. TGase2 activation was dependent on the ER stress-induced increase in the intracellular calcium ion concentration but not on the TGase2 protein expression level. Enzyme substrate analysis revealed that TGase2-mediated protein modification promoted protein aggregation concurrently with decreasing water solubility. Moreover, treatment with KCC009, a TGase2 inhibitor, abrogated ER stress-induced TGase2 activation and subsequent protein aggregation. However, TGase2 activation had no effect on ER stress-induced cell death. These results demonstrate that the accumulation of misfolded proteins activates TGase2, which further accelerates the formation of protein aggregates. Therefore, we suggest that inhibition of TGase2 may be a novel strategy by which to prevent the protein aggregation in age-related degenerative diseases.
Collapse
Affiliation(s)
- Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Wook Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisun Lim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyunsook Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Transglutaminase 2: biology, relevance to neurodegenerative diseases and therapeutic implications. Pharmacol Ther 2011; 133:392-410. [PMID: 22212614 DOI: 10.1016/j.pharmthera.2011.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders are characterized by progressive neuronal loss and the aggregation of disease-specific pathogenic proteins in hallmark neuropathologic lesions. Many of these proteins, including amyloid Αβ, tau, α-synuclein and huntingtin, are cross-linked by the enzymatic activity of transglutaminase 2 (TG2). Additionally, the expression and activity of TG2 is increased in affected brain regions in these disorders. These observations along with experimental evidence in cellular and mouse models suggest that TG2 can contribute to the abnormal aggregation of disease causing proteins and consequently to neuronal damage. This accumulating evidence has provided the impetus to develop inhibitors of TG2 as possible neuroprotective agents. However, TG2 has other enzymatic activities in addition to its cross-linking function and can modulate multiple cellular processes including apoptosis, autophagy, energy production, synaptic function, signal transduction and transcription regulation. These diverse properties must be taken into consideration in designing TG2 inhibitors. In this review, we discuss the biochemistry of TG2, its various physiologic functions and our current understanding about its role in degenerative diseases of the brain. We also describe the different approaches to designing TG2 inhibitors that could be developed as potential disease-modifying therapies.
Collapse
|
21
|
Wilhelmus MMM, de Jager M, Rozemuller AJM, Brevé J, Bol JGJM, Eckert RL, Drukarch B. Transglutaminase 1 and its regulator tazarotene-induced gene 3 localize to neuronal tau inclusions in tauopathies. J Pathol 2011; 226:132-42. [PMID: 22009441 DOI: 10.1002/path.2984] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/05/2011] [Accepted: 08/04/2011] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD), progressive supranuclear palsy (PSP), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and Pick's disease (PiD) are commonly known as tauopathies. Neurodegeneration observed in these diseases is linked to neuronal fibrillary hyperphosphorylated tau protein inclusions. Transglutaminases (TGs) are inducible enzymes, capable of modifying conformational and/or structural properties of proteins by inducing molecular cross-links. Both transglutaminase 1 (TG1) and transglutaminase 2 (TG2) are abundantly expressed in the brain and are associated with fibrillary hyperphosphorylated tau protein inclusions in neurons of AD, so-called neurofibrillary tangles (NFTs). However, other data obtained by our group suggested that tau pathology in the brain may be primarily related to TG1 and not to TG2 activity. To obtain more information on this issue, we set out to investigate the association of TG1, TG2, and TG-catalysed cross-links with fibrillary hyperphosphorylated tau inclusions in tauopathies other than AD, using immunohistochemistry. We found strong TG1 and TG-catalysed cross-link staining in neuronal tau inclusions characteristic of PSP, FTDP-17 with mutations in the tau gene (FTDP-17T), and PiD brain, whereas, in contrast to AD, TG2 was only rarely observed in these inclusions. Furthermore, using a biochemical approach, we demonstrated that tau is a substrate for TG1-mediated cross-linking. Interestingly, we found co-localization of the TG1 activator, tazarotene-induced gene 3 (TIG3), in the neuronal tau inclusions of PSP, FTDP-17T, and PiD, but not in NFTs of AD cases, indicating that these tau-containing protein aggregates are not identical. We conclude that TG1-catalysed cross-linking, regulated by TIG3, might play an important role in the formation of neuronal tau inclusions in PSP, FTDP-17T, and PiD brain.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hoffner G, Vanhoutteghem A, André W, Djian P. Transglutaminase in epidermis and neurological disease or what makes a good cross-linking substrate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:97-160. [PMID: 22220473 DOI: 10.1002/9781118105771.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Régulation de la Transcription et Maladies Génétiques, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
23
|
Nemes Z. Effects and Analysis of Transglutamination on Protein Aggregation and Clearance in Neurodegenerative Diseases. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:347-83. [DOI: 10.1002/9781118105771.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Wilhelmus MMM, Verhaar R, Andringa G, Bol JGJM, Cras P, Shan L, Hoozemans JJM, Drukarch B. Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson's disease brain. Brain Pathol 2011; 21:130-9. [PMID: 20731657 PMCID: PMC8094245 DOI: 10.1111/j.1750-3639.2010.00429.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/09/2010] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates and degeneration of melanized neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD brain, tTG-induced cross-links have been identified in α-synuclein monomers, oligomers and α-synuclein aggregates. However, whether tTG and α-synuclein occur together in PD affected neurons remains to be established. Interestingly, using immunohistochemistry, we observed a granular distribution pattern of tTG, characteristic of melanized neurons in PD brain. Apart from tTG, these granules were also positive for typical endoplasmic reticulum (ER)-resident chaperones, that is, protein disulphide isomerase, ERp57 and calreticulin, suggesting a direct link to the ER. Additionally, we observed the presence of phosphorylated pancreatic ER kinase (pPERK), a classical ER stress marker, in tTG granule positive neurons in PD brain, although no subcellular colocalization of tTG and pPERK was found. Our data therefore suggest that tTG localization to granular ER compartments is specific for stressed melanized neurons in PD brain. Moreover, as also α-synuclein aggregates were observed in tTG granule positive neurons, these results provide a clue to the cellular site of interaction between α-synuclein and tTG.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schmid AW, Condemi E, Tuchscherer G, Chiappe D, Mutter M, Vogel H, Moniatte M, Tsybin YO. Tissue transglutaminase-mediated glutamine deamidation of beta-amyloid peptide increases peptide solubility, whereas enzymatic cross-linking and peptide fragmentation may serve as molecular triggers for rapid peptide aggregation. J Biol Chem 2011; 286:12172-88. [PMID: 21300794 DOI: 10.1074/jbc.m110.176149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue transglutaminase (TGase) has been implicated in a number of cellular processes and disease states, where the enzymatic actions of TGase may serve in both, cell survival and apoptosis. To date, the precise functional properties of TGase in cell survival or cell death mechanisms still remain elusive. TGase-mediated cross-linking has been reported to account for the formation of insoluble lesions in conformational diseases. We report here that TGase induces intramolecular cross-linking of β-amyloid peptide (Aβ), resulting in structural changes of monomeric Aβ. Using high resolution mass spectrometry (MS) of cross-linked Aβ peptides, we observed a shift in mass, which is, presumably associated with the loss of NH3 due to enzymatic transamidation activity and hence intramolecular peptide cross-linking. We have observed that a large population of Aβ monomers contained an 0.984 Da increase in mass at a glutamine residue, indicating that glutamine 15 serves as an indispensable substrate in TGase-mediated deamidation to glutamate 15. We provide strong analytical evidence on TGase-mediated Aβ peptide dimerization, through covalent intermolecular cross-linking and hence the formation of Aβ1-40 dimers. Our in depth analyses indicate that TGase-induced post-translational modifications of Aβ peptide may serve as an important seed for aggregation.
Collapse
Affiliation(s)
- Adrien W Schmid
- Proteomics Core Facility, AI 0151, Station 15, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Davies JE, Rose C, Sarkar S, Rubinsztein DC. Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Sci Transl Med 2010; 2:34ra40. [PMID: 20519718 DOI: 10.1126/scitranslmed.3000723] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by a trinucleotide repeat expansion mutation in the coding region of the gene encoding PABPN1 (polyadenylate-binding protein nuclear 1). Mutant PABPN1 with a polyalanine tract expansion forms aggregates within the nuclei of skeletal muscle fibers. There is currently no effective treatment. We have developed cell and mouse models of OPMD and have identified the aggregation of mutant PABPN1 and apoptosis as therapeutic targets. Here, we show that transglutaminase activity is increased in muscle from OPMD model mice. Elevated transglutaminase 2 expression enhances, whereas TG2 knockdown suppresses, the toxicity and aggregation of mutant PABPN1 in cells. Cystamine protects against the toxicity of mutant PABPN1 and exerts its effect via the inhibition of transglutaminase 2, as cystamine treatment is unable to further reduce the protective effect of transglutaminase 2 knockdown on mutant PABPN1 toxicity in cells. Cystamine also reduces the aggregation and toxicity of mutant PABPN1 in human cells. In a mouse model of OPMD, cystamine treatment reduced the elevated transglutaminase activity, attenuated muscle weakness, reduced aggregate load, and decreased apoptotic markers in muscle. Therefore, inhibitors of transglutaminase 2 should be considered as possible therapeutics for OPMD.
Collapse
Affiliation(s)
- Janet E Davies
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
27
|
Zilka N, Korenova M, Novak M. Misfolded tau protein and disease modifying pathways in transgenic rodent models of human tauopathies. Acta Neuropathol 2009; 118:71-86. [PMID: 19238406 DOI: 10.1007/s00401-009-0499-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 12/24/2022]
Abstract
Human tauopathies represent a heterogeneous group of neurodegenerative disorders such as Alzheimer's disease (AD) that are characterized by the presence of intracellular accumulations of abnormal filaments of protein tau. Presently, AD poses an increasing public health concern, because it affects nearly 2% of the population in industrialized countries and the number of patients is expected to increase threefold within the next 50 years. Therefore, the identification of disease modifying pathways that will lead to the development of novel therapeutic approaches targeting downstream molecular events of the tauopathy is of paramount importance. In order to identify factors that may exacerbate or inhibit the disease phenotype a number of genetically modified rodent models reproducing key clinical, histopathological and molecular hallmarks of human tauopathies were developed. Current tau transgenic rodent models express as a transgene either an individual or all six human wild-type tau isoforms, mutant tau linked to FTDP-17, or structurally modified tau species derived from AD. In this review we will provide an up-to-date account of various facets of the tau neurodegenerative cascade with a special emphasis on the evolution of neurofibrillary tangles, neuronal death and neuroinflammation.
Collapse
Affiliation(s)
- Norbert Zilka
- Centre of Excellence for Alzheimer's Disease and Related Disorders, Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic
| | | | | |
Collapse
|
28
|
Citron BA, Dennis JS, Zeitlin RS, Echeverria V. Transcription factor Sp1 dysregulation in Alzheimer's disease. J Neurosci Res 2008; 86:2499-504. [PMID: 18449948 DOI: 10.1002/jnr.21695] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Altered gene expression occurs in central nervous system disorders, including Alzheimer's disease (AD). Transcription factor Sp1 may be involved insofar as it can regulate the expression of several AD-related proteins, including amyloid precursor protein (APP) and tau. Sp1 could itself be regulated by inflammatory and other factors associated with AD, such as interleukin-1beta. We measured an almost threefold elevation in the number of mRNA molecules of this cytokine in the AD frontal cortex. Sp1 mRNA was found to be up-regulated in these AD brains (along with Sp1-regulated COX-2), and the Sp1 increase was also seen at the protein level by Western immunoblotting. To determine whether this would also occur in transgenic mice developing AD pathology, we examined the expression of Sp1 in the cortex and hippocampus and observed higher levels of Sp1 mRNA and protein. These results indicate that elements of regulatory pathways involving transcription factor Sp1 may be useful targets for therapeutic intervention to prevent or reverse AD.
Collapse
Affiliation(s)
- Bruce A Citron
- Laboratory of Molecular Biology, Research and Development 151, Bay Pines VA Healthcare System, Bay Pines, Florida 33744-4125, USA.
| | | | | | | |
Collapse
|
29
|
Wilhelmus MMM, Grunberg SCS, Bol JGJM, van Dam AM, Hoozemans JJM, Rozemuller AJM, Drukarch B. Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer's disease brain. Brain Pathol 2008; 19:612-22. [PMID: 18673368 DOI: 10.1111/j.1750-3639.2008.00197.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by pathological lesions, in particular senile plaques (SPs), cerebral amyloid angiopathy (CAA) and neurofibrillary tangles (NFTs), predominantly consisting of self-aggregated proteins amyloid beta (Abeta) and tau, respectively. Transglutaminases (TGs) are inducible enzymes, capable of modifying conformational and/or structural properties of proteins by inducing molecular covalent cross-links. Both Abeta and tau are substrates for TG cross-linking activity, which links TGs to the aggregation process of both proteins in AD brain. The aim of this study was to investigate the association of transglutaminase 1 (TG1), transglutaminase 2 (TG2) and TG-catalyzed cross-links with the pathological lesions of AD using immunohistochemistry. We observed immunoreactivity for TG1, TG2 and TG-catalyzed cross-links in NFTs. In addition, both TG2 and TG-catalyzed cross-links colocalized with Abeta in SPs. Furthermore, both TG2 and TG-catalyzed cross-links were associated with CAA. We conclude that these TGs demonstrate cross-linking activity in AD lesions, which suggests that both TG1 and TG2 are likely involved in the protein aggregation processes underlying the formation of SPs, CAA and/or NFTs in AD brain.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Institute for Clinical and Experimental Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang DS, Dickson DW, Malter JS. Tissue transglutaminase, protein cross-linking and Alzheimer's disease: review and views. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2008; 1:5-18. [PMID: 18784819 PMCID: PMC2480529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 07/28/2007] [Indexed: 05/26/2023]
Abstract
Extensive protein cross-linking and aggregation are some of the most common molecular events in the pathogenesis of Alzheimer's disease (AD). Both beta-amyloid (Abeta) plaques and neurofibrillary tangles, which are extracellular and intracellular proteinaceous aggregates, respectively, contribute to neuronal death and progressive cognitive decline. Although protein cross-linking has been recognized and extensively studied for many years, the underlying mechanisms are largely unknown. Recent data indicates that tissue transglutaminase (tTG), which catalyzes the cross-linking of a wide spectrum of proteins including Abeta, tau, alpha-synuclein and neurofilament proteins, may be involved in protein aggregation in AD. Many AD risk factors, such as trauma, inflammation, ischemia and stress, up-regulate tTG protein and activity levels. In this review, we summarize the evidence that tTG plays a role in AD, especially in cross-linking of Abeta, tau, alpha-synuclein and neurofilament proteins. An experimentally testable hypothesis is that tTG may play a central role in AD pathogenesis and that it provides a conceptual link between sporadic and familial AD through a shared pathogenic pathway.
Collapse
Affiliation(s)
- Deng-Shun Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This timely update discusses novel diagnostic approaches, recently identified genes, and innovative experimental symptomatic treatments for these devastating disorders. RECENT FINDINGS Differential patterns in the basal ganglia transcranial sonography, magnetic resonance diffusion-weighted imaging regional apparent diffusion coefficients in the brainstem, basal ganglia T2-weighted gradient echo sequences combined with fluid attenuated inversion recovery, or saccades error rates in single and mixed-task blocks could help differentiate the various parkinsonian disorders. In addition to the familial tauopathies (frontotemporal dementia associated with chromosome 17) presenting with an atypical parkinsonian phenotype, 'TDP-43opathies' and 'tataboxbinding or ataxinopathies', depending on the protein deposited in the brain, widen the scope of the familial atypical parkinsonian disorders. Recent identification of novel deep brain stimulation targets such as the pedunculopontine nucleus may help treat the balance and gait disorder in atypical parkinsonian disorders in the near future. SUMMARY These new findings are important for diagnosis, help better understanding of the nosology of these disorders, and will likely in the near future impact our clinical practice.
Collapse
Affiliation(s)
- Irene Litvan
- Department of Neurology, University of Louisville, Louisville, Kentucky 40202, USA.
| |
Collapse
|
32
|
Abstract
Transglutaminase catalyzes a covalent bond between peptide-bound glutamine residues and either lysine-bound peptide residues or mono- or polyamines. Multiple lines of evidence suggest that transglutaminase is involved in neurodegenerative diseases including Alzheimer disease, progressive supranuclear palsy, Huntington disease (HD), and Parkinson disease. In all of the neurodegenerative diseases examined to date, transglutaminase enzyme activity is upregulated in selectively vulnerable brain regions, transglutaminase proteins are associated with inclusion bodies characteristic of the diseases, and prominent proteins in the inclusion bodies are modified by transglutaminase enzymes. These prominent proteins in the inclusion bodies, including tau, alpha-synuclein, and huntingtin protein, are modified by transglutaminase in vitro and alpha-synuclein and huntingtin protein are modified in cells in culture. Similar changes in transglutaminase and transglutaminase-modified proteins are replicated in transgenic mouse models of the neurodegenerative diseases, including Huntington disease and progressive supranuclear palsy. Lastly, inhibition of transglutaminase either via drug treatments or molecular approaches is beneficial for the treatment of HD transgenic mice but has yet to be explored for the other neurodegenerative diseases. Further research is needed to determine the specific role(s) that transglutaminase plays in the pathophysiology of neurodegenerative diseases with possible implications for transglutaminase as a therapeutic target.
Collapse
Affiliation(s)
- Nancy A Muma
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois, USA.
| |
Collapse
|
33
|
Schöneich C. Protein modification in aging: an update. Exp Gerontol 2006; 41:807-12. [PMID: 17008045 DOI: 10.1016/j.exger.2006.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Post-translational modifications of proteins are an important biologic tool for the production of various protein species from a single gene, which may vary in conformation, function, biologic half-life and complex formation with other proteins. The present minireview summarizes a few selected research observations important for the role of post-translational modifications in biologic aging and age-related diseases, including farnesylation, methylglyoxal-derivatization, transglutaminase pathways and the formation of 3-nitrotyrosine and 2-oxo-histidine in vivo.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
34
|
Reynolds MR, Lukas TJ, Berry RW, Binder LI. Peroxynitrite-Mediated τ Modifications Stabilize Preformed Filaments and Destabilize Microtubules through Distinct Mechanisms†. Biochemistry 2006; 45:4314-26. [PMID: 16566606 DOI: 10.1021/bi052142h] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive amnestic dementia typified by abnormal modifications of the microtubule (MT)-associated tau protein that promote its pathological self-assembly and displacement from the MT lattice. Previously, we showed that peroxynitrite (ONOO-) induces the oxidative 3,3'-dityrosine (3,3'-DT) cross-linking and site-selective nitration of tau monomers [Reynolds et al. (2005) Biochemistry 44, 1690-1700]. In the present study, we examined the effects of ONOO(-)-mediated modifications on two key elements of tau pathobiology: (1) the stability of preformed tau filaments and (2) the ability of monomeric tau to promote tubulin assembly. Here, we report that treatment of synthetic tau filaments with ONOO- generates heat-stable, SDS-insoluble aggregates with a significantly reduced mobility by SDS-PAGE compared to that of nontreated filaments. Ultrastructurally, these aggregates appear to be cross-linked via interfilament bridges. Using LC-MS/MS and HPLC with fluorescent detection, we demonstrate that covalent 3,3'-DT linkages are present within these higher-order aggregates. Similar to monomeric tau, filamentous tau exhibits a hierarchical pattern of nitration following ONOO- treatment with site selectivity toward the amino-terminal residues Tyr18 and Tyr29. Further, select nitration of residues Tyr18, Tyr29, Tyr197, and Tyr394, events known to stabilize the pathological Alz-50 conformation [Reynolds et al. (2005) Biochemistry 44, 13997-14009], inhibits the ability of monomeric tau to promote tubulin assembly. This effect is specific for the 3-NT modification, as mutant tau proteins pseudophosphorylated at each Tyr residue are fully competent to stabilize MTs. Collectively, our results suggest that ONOO(-)-mediated modifications stabilize tau filaments via 3,3'-DT bonding and destabilize MTs by site-selective nitration of tau monomers. Moreover, assumption of the Alz-50 conformation may be the mechanism through which tau nitration modulates MT stability.
Collapse
Affiliation(s)
- Matthew R Reynolds
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
35
|
|