1
|
Hellmer CB, Hall LM, Bohl JM, Sharpe ZJ, Smith RG, Ichinose T. Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Rep 2021; 37:110106. [PMID: 34910920 PMCID: PMC8793255 DOI: 10.1016/j.celrep.2021.110106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal bipolar cells are second-order neurons that transmit basic features of the visual scene to postsynaptic partners. However, their contribution to motion detection has not been fully appreciated. Here, we demonstrate that cholinergic feedback from starburst amacrine cells (SACs) to certain presynaptic bipolar cells via alpha-7 nicotinic acetylcholine receptors (α7-nAChRs) promotes direction-selective signaling. Patch clamp recordings reveal that distinct bipolar cell types making synapses at proximal SAC dendrites also express α7-nAChRs, producing directionally skewed excitatory inputs. Asymmetric SAC excitation contributes to motion detection in On-Off direction-selective ganglion cells (On-Off DSGCs), predicted by computational modeling of SAC dendrites and supported by patch clamp recordings from On-Off DSGCs when bipolar cell α7-nAChRs is eliminated pharmacologically or by conditional knockout. Altogether, these results show that cholinergic feedback to bipolar cells enhances direction-selective signaling in postsynaptic SACs and DSGCs, illustrating how bipolar cells provide a scaffold for postsynaptic microcircuits to cooperatively enhance retinal motion detection.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Internal Medicine, St. Mary Mercy Livonia Hospital, Livonia, MI 48154, USA
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zachary J Sharpe
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 41:674-688. [PMID: 33268542 DOI: 10.1523/jneurosci.1633-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/29/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4β2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.
Collapse
|
3
|
Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, Montgomery JM. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2020; 318:H1387-H1400. [DOI: 10.1152/ajpheart.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.
Collapse
Affiliation(s)
- Jesse L. Ashton
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Joscelin E. G. Smith
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Sangjun Jin
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Bruce H. Smaill
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Kozlova AA, Lotfi M, Okkema PG. Cross Talk with the GAR-3 Receptor Contributes to Feeding Defects in Caenorhabditis elegans eat-2 Mutants. Genetics 2019; 212:231-243. [PMID: 30898771 PMCID: PMC6499512 DOI: 10.1534/genetics.119.302053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/14/2019] [Indexed: 02/02/2023] Open
Abstract
Precise signaling at the neuromuscular junction (NMJ) is essential for proper muscle contraction. In the Caenorhabditis elegans pharynx, acetylcholine (ACh) released from the MC and M4 motor neurons stimulates two different types of contractions in adjacent muscle cells, termed pumping and isthmus peristalsis. MC stimulates rapid pumping through the nicotinic ACh receptor EAT-2, which is tightly localized at the MC NMJ, and eat-2 mutants exhibit a slow pump rate. Surprisingly, we found that eat-2 mutants also hyperstimulated peristaltic contractions, and that they were characterized by increased and prolonged Ca2+ transients in the isthmus muscles. This hyperstimulation depends on cross talk with the GAR-3 muscarinic ACh receptor as gar-3 mutation specifically suppressed the prolonged contraction and increased Ca2+ observed in eat-2 mutant peristalses. Similar GAR-3-dependent hyperstimulation was also observed in mutants lacking the ace-3 acetylcholinesterase, and we suggest that NMJ defects in eat-2 and ace-3 mutants result in ACh stimulation of extrasynaptic GAR-3 receptors in isthmus muscles. gar-3 mutation also suppressed slow larval growth and prolonged life span phenotypes that result from dietary restriction in eat-2 mutants, indicating that cross talk with the GAR-3 receptor has a long-term impact on feeding behavior and eat-2 mutant phenotypes.
Collapse
Affiliation(s)
- Alena A Kozlova
- Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607
| | - Michelle Lotfi
- Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607
| | - Peter G Okkema
- Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607
| |
Collapse
|
5
|
Koszinowski S, La Padula V, Edlich F, Krieglstein K, Busch H, Boerries M. Bid Expression Network Controls Neuronal Cell Fate During Avian Ciliary Ganglion Development. Front Physiol 2018; 9:797. [PMID: 30008673 PMCID: PMC6034111 DOI: 10.3389/fphys.2018.00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
Avian ciliary ganglion (CG) development involves a transient execution phase of apoptosis controlling the final number of neurons, but the time-dependent molecular mechanisms for neuronal cell fate are largely unknown. To elucidate the molecular networks regulating important aspects of parasympathetic neuronal development, a genome-wide expression analysis was performed during multiple stages of avian CG development between embryonic days E6 and E14. The transcriptome data showed a well-defined sequence of events, starting from neuronal migration via neuronal fate cell determination, synaptic transmission, and regulation of synaptic plasticity to growth factor associated signaling. In particular, we extracted a neuronal apoptosis network that characterized the cell death execution phase at E8/E9 and apoptotic cell clearance at E14 by combining the gene time series analysis with network synthesis from the chicken interactome. Network analysis identified TP53 as key regulator and predicted involvement of the BH3 interacting domain death agonist (BID). A virus-based RNAi knockdown approach in vivo showed a crucial impact of BID expression on the execution of ontogenetic programmed cell death (PCD). In contrast, Bcl-XL expression did not impact PCD. Therefore, BID-mediated apoptosis represents a novel cue essential for timing within CG maturation.
Collapse
Affiliation(s)
- Sophie Koszinowski
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Veronica La Padula
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, and Centre for Biological Signalling Studies BIOSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Luebeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Hay YA, Lambolez B, Tricoire L. Nicotinic Transmission onto Layer 6 Cortical Neurons Relies on Synaptic Activation of Non-α7 Receptors. Cereb Cortex 2015; 26:2549-2562. [PMID: 25934969 DOI: 10.1093/cercor/bhv085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nicotinic excitation in neocortex is mediated by low-affinity α7 receptors and by high-affinity α4β2 receptors. There is evidence that α7 receptors are synaptic, but it is unclear whether high-affinity receptors are activated by volume transmission or synaptic transmission. To address this issue, we characterized responses of excitatory layer 6 (L6) neurons to optogenetic release of acetylcholine (ACh) in cortical slices. L6 responses consisted in a slowly decaying α4β2 current and were devoid of α7 component. Evidence that these responses were mediated by synapses was 4-fold. 1) Channelrhodopsin-positive cholinergic varicosities made close appositions onto responsive neurons. 2) Inhibition of ACh degradation failed to alter onset kinetics and amplitude of currents. 3) Quasi-saturation of α4β2 receptors occurred upon ACh release. 4) Response kinetics were unchanged in low release probability conditions. Train stimulations increased amplitude and decay time of responses and these effects appeared to involve recruitment of extrasynaptic receptors. Finally, we found that the α5 subunit, known to be associated with α4β2 in L6, regulates short-term plasticity at L6 synapses. Our results are consistent with previous anatomical observations of widespread cholinergic synapses and suggest that a significant proportion of these small synapses operate via high-affinity nicotinic receptors.
Collapse
Affiliation(s)
- Y Audrey Hay
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Bertrand Lambolez
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Ludovic Tricoire
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| |
Collapse
|
7
|
Springer MG, Kullmann PHM, Horn JP. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo. J Physiol 2014; 593:803-23. [PMID: 25398531 DOI: 10.1113/jphysiol.2014.284125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/04/2014] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The synaptic organization of paravertebral sympathetic ganglia enables them to relay activity from the spinal cord to the periphery and thereby control autonomic functions, including blood pressure and body temperature. The present experiments were done to reconcile conflicting observations in tissue culture, intact isolated ganglia and living animals. By recording intracellularly from dissociated neurons and intact ganglia, we found that when electrode damage makes cells leaky it could profoundly distort cellular excitability and the integration of synaptic potentials. The experiments relied on the dynamic clamp method, which allows the creation of virtual ion channels by injecting current into a cell based upon a mathematical model and using rapid feedback between the model and cell. The results support the hypothesis that sympathetic ganglia can produce a 2.4-fold amplification of presynaptic activity. This could aid understanding of the neural hyperactivity that is believed to drive high blood pressure in some patients. ABSTRACT The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3-10 nS converted cells from classes 1 and 2 to class 3 dynamics with current-voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry.
Collapse
Affiliation(s)
- Mitchell G Springer
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
8
|
Jayakar SS, Pugh PC, Dale Z, Starr ER, Cole S, Margiotta JF. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting. Mol Cell Neurosci 2014; 63:1-12. [PMID: 25168001 DOI: 10.1016/j.mcn.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/06/2014] [Accepted: 08/23/2014] [Indexed: 12/12/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such coordination has broad relevance for understanding the control of autonomic synapses and consequent visceral functions.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurosciences, University of Toledo, College of Medicine and Life Sciences, United States.
| | - Phyllis C Pugh
- Department of Neurosciences, University of Toledo, College of Medicine and Life Sciences, United States.
| | - Zack Dale
- Department of Neurosciences, University of Toledo, College of Medicine and Life Sciences, United States.
| | - Eric R Starr
- Department of Neurosciences, University of Toledo, College of Medicine and Life Sciences, United States.
| | - Samantha Cole
- Department of Neurosciences, University of Toledo, College of Medicine and Life Sciences, United States.
| | - Joseph F Margiotta
- Department of Neurosciences, University of Toledo, College of Medicine and Life Sciences, United States.
| |
Collapse
|
9
|
Subunit composition and kinetics of the Renshaw cell heteromeric nicotinic receptors. Biochem Pharmacol 2013; 86:1114-21. [DOI: 10.1016/j.bcp.2013.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 11/24/2022]
|
10
|
Bennett C, Arroyo S, Berns D, Hestrin S. Mechanisms generating dual-component nicotinic EPSCs in cortical interneurons. J Neurosci 2012; 32:17287-96. [PMID: 23197720 PMCID: PMC3525105 DOI: 10.1523/jneurosci.3565-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/26/2023] Open
Abstract
Activation of cortical nicotinic receptors by cholinergic axons from the basal forebrain (BF) significantly impacts cortical function, and the loss of nicotinic receptors is a hallmark of aging and neurodegenerative disease. We have previously shown that stimulation of BF axons generates a fast α7 and a slow non-α7 receptor-dependent response in cortical interneurons. However, the synaptic mechanisms that underlie this dual-component nicotinic response remain unclear. Here, we report that fast α7 receptor-mediated EPSCs in the mouse cortex are highly variable and insensitive to perturbations of acetylcholinesterase (AChE), while slow non-α7 receptor-mediated EPSCs are reliable and highly sensitive to AChE activity. Based on these data, we propose that the fast and slow nicotinic responses reflect differences in synaptic structure between cholinergic varicosities activating α7 and non-α7 classes of nicotinic receptors.
Collapse
Affiliation(s)
- Corbett Bennett
- Department of Comparative Medicine, Stanford University School of Medicine, and
| | - Sergio Arroyo
- Department of Comparative Medicine, Stanford University School of Medicine, and
| | - Dominic Berns
- Department of Biology, Stanford University, Stanford, California 94305
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford University School of Medicine, and
| |
Collapse
|