1
|
Sinha P, Turchyna Y, Mitchell SPC, Sadek M, Armagan G, Perrin F, Maesako M, Berezovska O. Glutamate Transporter 1 as a Novel Negative Regulator of Amyloid β. Cells 2024; 13:1600. [PMID: 39404364 PMCID: PMC11475981 DOI: 10.3390/cells13191600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Glutamate transporter-1 (GLT-1) dynamics are implicated in excitotoxicity and Alzheimer's disease (AD) progression. Early stages of AD are often marked by hyperactivity and increased epileptiform activity preceding cognitive decline. Previously, we identified a direct interaction between GLT-1 and Presenilin 1 (PS1) in the brain, highlighting GLT-1 as a promising target in AD research. This study reports the significance of this interaction and uncovers a novel role of GLT-1 in modulating amyloid-beta (Aβ) production. Overexpression of GLT-1 in cells reduces the levels of Aβ40 and Aβ42 by decreasing γ-secretase activity pertinent to APP processing and induces a more "open" PS1 conformation, resulting in decreased Aβ42/40 ratio. Inhibition of the GLT-1/PS1 interaction using cell-permeable peptides produced an opposing effect on Aβ, highlighting the pivotal role of this interaction in regulating Aβ levels. These findings emphasize the potential of targeting the GLT-1/PS1 interaction as a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th Street, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Serneels L, Bammens L, Zwijsen A, Tolia A, Chávez-Gutiérrez L, De Strooper B. Functional and topological analysis of PSENEN, the fourth subunit of the γ-secretase complex. J Biol Chem 2024; 300:105533. [PMID: 38072061 PMCID: PMC10790097 DOI: 10.1016/j.jbc.2023.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024] Open
Abstract
The γ-secretase complexes are intramembrane cleaving proteases involved in the generation of the Aβ peptides in Alzheimer's disease. The complex consists of four subunits, with Presenilin harboring the catalytic site. Here, we study the role of the smallest subunit, PSENEN or Presenilin enhancer 2, encoded by the gene Psenen, in vivo and in vitro. We find a profound Notch deficiency phenotype in Psenen-/- embryos confirming the essential role of PSENEN in the γ-secretase complex. We used Psenen-/- fibroblasts to explore the structure-function of PSENEN by the scanning cysteine accessibility method. Glycine 22 and proline 27, which border the membrane domains 1 and 2 of PSENEN, are involved in complex formation and stabilization of γ-secretase. The hairpin structured hydrophobic membrane domains 1 and 2 are exposed to a water-containing cavity in the complex, while transmembrane domain 3 is not water exposed. We finally demonstrate the essential role of PSENEN for the cleavage activity of the complex. PSENEN is more than a structural component of the γ-secretase complex and might contribute to the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Lutgarde Serneels
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Leen Bammens
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Zwijsen
- Laboratory of Developmental Signaling, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexandra Tolia
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
4
|
Wolfe MS, Miao Y. Structure and mechanism of the γ-secretase intramembrane protease complex. Curr Opin Struct Biol 2022; 74:102373. [PMID: 35461161 DOI: 10.1016/j.sbi.2022.102373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
γ-Secretase is a membrane protein complex that proteolyzes within the transmembrane domain of >100 substrates, including those derived from the amyloid precursor protein and the Notch family of cell surface receptors. The nine-transmembrane presenilin is the catalytic component of this aspartyl protease complex that carries out hydrolysis in the lipid bilayer. Advances in cryoelectron microscopy have led to the elucidation of the structure of the γ-secretase complex at atomic resolution. Recently, structures of the enzyme have been determined with bound APP- or Notch-derived substrates, providing insight into the nature of substrate recognition and processing. Molecular dynamics simulations of substrate-bound enzymes suggest dynamic mechanisms of intramembrane proteolysis. Structures of the enzyme bound to small-molecule inhibitors and modulators have also been solved, setting the stage for rational structure-based drug discovery targeting γ-secretase.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.
| | - Yinglong Miao
- Center for Computational Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA. https://twitter.com/yinglongmiao
| |
Collapse
|
5
|
Specific Mutations in Aph1 Cause γ-Secretase Activation. Int J Mol Sci 2022; 23:ijms23010507. [PMID: 35008932 PMCID: PMC8745412 DOI: 10.3390/ijms23010507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023] Open
Abstract
Amyloid beta peptides (Aβs) are generated from amyloid precursor protein (APP) through multiple cleavage steps mediated by γ-secretase, including endoproteolysis and carboxypeptidase-like trimming. The generation of neurotoxic Aβ42/43 species is enhanced by familial Alzheimer's disease (FAD) mutations within the catalytic subunit of γ-secretase, presenilin 1 (PS1). FAD mutations of PS1 cause partial loss-of-function and decrease the cleavage activity. Activating mutations, which have the opposite effect of FAD mutations, are important for studying Aβ production. Aph1 is a regulatory subunit of γ-secretase; it is presumed to function as a scaffold of the complex. In this study, we identified Aph1 mutations that are active in the absence of nicastrin (NCT) using a yeast γ-secretase assay. We analyzed these Aph1 mutations in the presence of NCT; we found that the L30F/T164A mutation is activating. When introduced in mouse embryonic fibroblasts, the mutation enhanced cleavage. The Aph1 mutants produced more short and long Aβs than did the wild-type Aph1, without an apparent modulatory function. The mutants did not change the amount of γ-secretase complex, suggesting that L30F/T164A enhances catalytic activity. Our results provide insights into the regulatory function of Aph1 in γ-secretase activity.
Collapse
|
6
|
Cai T, Tomita T. Sequential conformational changes in transmembrane domains of presenilin 1 in Aβ42 downregulation. J Biochem 2021; 170:215-227. [PMID: 33739423 DOI: 10.1093/jb/mvab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease worldwide. AD is pathologically characterized by the deposition of senile plaques in the brain, which are composed of an amyloid-β peptide (Aβ) that is produced through the multistep cleavage of amyloid precursor protein (APP) by γ-secretase. γ-Secretase is a membrane protein complex, which includes its catalytic subunit presenilin 1 (PS1). However, much about the structural dynamics of this enzyme remain unclear. We have previously demonstrated that movements of the transmembrane domain (TMD) 1 and TMD3 of PS1 are strongly associated with decreased production of the Aβ peptide ending at the 42nd residue (i.e., Aβ42), which is the aggregation-prone, toxic species. However, the association between these movements as well as the sequence of these TMDs remains unclear. In this study, we raised the possibility that the vertical movement of TMD1 is a prerequisite for expansion of the catalytic cavity around TMD3 of PS1, resulting in reduced Aβ42 production. Our results shed light on the association between the conformational changes of TMDs and the regulation of γ-secretase activity.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Spitz C, Schlosser C, Guschtschin-Schmidt N, Stelzer W, Menig S, Götz A, Haug-Kröper M, Scharnagl C, Langosch D, Muhle-Goll C, Fluhrer R. Non-canonical Shedding of TNFα by SPPL2a Is Determined by the Conformational Flexibility of Its Transmembrane Helix. iScience 2020; 23:101775. [PMID: 33294784 PMCID: PMC7689174 DOI: 10.1016/j.isci.2020.101775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate's TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future.
Collapse
Affiliation(s)
- Charlotte Spitz
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| | - Nadja Guschtschin-Schmidt
- Karlsruhe Institute of Technology, Institute for Biological Interfaces 4, 76344 Eggenstein- Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute of Organic Chemistry, 76131 Karlsruhe, Germany
| | - Walter Stelzer
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Simon Menig
- Physics of Synthetic Biological Systems, Technische Universität München, Maximus-von-Imhof Forum 4, 85340 Freising, Germany
| | - Alexander Götz
- Present Address: Leibniz Supercomputing Centre, Boltzmannstr. 1, 85748 Garching, Germany
| | - Martina Haug-Kröper
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| | - Christina Scharnagl
- Physics of Synthetic Biological Systems, Technische Universität München, Maximus-von-Imhof Forum 4, 85340 Freising, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Claudia Muhle-Goll
- Karlsruhe Institute of Technology, Institute for Biological Interfaces 4, 76344 Eggenstein- Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute of Organic Chemistry, 76131 Karlsruhe, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
- DZNE – German Center for Neurodegenerative Diseases, Feodor-Lynen-Str 17, 81377 Munich, Germany
| |
Collapse
|
8
|
Kawaguchi K, Kaneko S. Notch Signaling and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:69-80. [PMID: 33034027 DOI: 10.1007/978-3-030-55031-8_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions between liver cells are closely regulated by Notch signaling. Notch signaling has been reported clinically related to bile duct hypogenesis in Alagille syndrome, which is caused by mutations in the Jagged1 gene. Notch activation and hepatocarcinogenesis are closely associated since cancer signaling is affected by the development of liver cells and cancer stem cells. Gene expression and genomic analysis using a microarray revealed that abnormalities in Notch-related genes were associated with the aggressiveness of liver cancer. This pattern was also accompanied with α-fetoprotein- and EpCAM-expressing phenotypes in vitro, in vivo, and in clinical tissues. Hepatitis B or C virus chronic infection or alcohol- or steatosis-related liver fibrosis induces liver cancer. Previous reports demonstrated that HBx, a hepatitis B virus protein, was associated with Jagged1 expression. We found that the Jagged1 and Notch1 signaling pathways were closely associated with the transcription of covalently closed circular hepatitis B virus DNA, which regulated cAMP response element-binding protein, thereby affecting Notch1 regulation by the E3 ubiquitin ligase ITCH. This viral pathogenesis in hepatocytes induces liver cancer. In conclusion, Notch signaling exerts various actions and is a clinical signature associated with hepatocarcinogenesis and liver context-related developmental function.
Collapse
Affiliation(s)
- Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
9
|
Evolutionary History of Alzheimer Disease-Causing Protein Family Presenilins with Pathological Implications. J Mol Evol 2020; 88:674-688. [DOI: 10.1007/s00239-020-09966-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
|
10
|
Hitzenberger M, Götz A, Menig S, Brunschweiger B, Zacharias M, Scharnagl C. The dynamics of γ-secretase and its substrates. Semin Cell Dev Biol 2020; 105:86-101. [DOI: 10.1016/j.semcdb.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
|
11
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Zhang S, Cai F, Wu Y, Bozorgmehr T, Wang Z, Zhang S, Huang D, Guo J, Shen L, Rankin C, Tang B, Song W. A presenilin-1 mutation causes Alzheimer disease without affecting Notch signaling. Mol Psychiatry 2020; 25:603-613. [PMID: 29915376 DOI: 10.1038/s41380-018-0101-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/19/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023]
Abstract
Presenilin-1 (PSEN1) is the catalytic subunit of the γ-secretase complex, and pathogenic mutations in the PSEN1 gene account for the majority cases of familial AD (FAD). FAD-associated mutant PSEN1 proteins have been shown to affect APP processing and Aβ generation and inhibit Notch1 cleavage and Notch signaling. In this report, we found that a PSEN1 mutation (S169del) altered APP processing and Aβ generation, and promoted neuritic plaque formation as well as learning and memory deficits in AD model mice. However, this mutation did not affect Notch1 cleavage and Notch signaling in vitro and in vivo. Taken together, we demonstrated that PSEN1S169del has distinct effects on APP processing and Notch1 cleavage, suggesting that Notch signaling may not be critical for AD pathogenesis and serine169 could be a critical site as a potential target for the development of novel γ-secretase modulators without affecting Notch1 cleavage to treat AD.
Collapse
Affiliation(s)
- Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yili Wu
- Department of Psychiatry, Graduate Program in Psychiatry, Jining Medical University, Jining, China
| | - Tahereh Bozorgmehr
- Department of Psychology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daochao Huang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Jifeng Guo
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Catharine Rankin
- Department of Psychology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Beisha Tang
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Cai T, Hatano A, Kanatsu K, Tomita T. Histidine 131 in presenilin 1 is the pH-sensitive residue that causes the increase in Aβ42 level in acidic pH. J Biochem 2019; 167:463-471. [DOI: 10.1093/jb/mvz110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022] Open
Abstract
AbstractAlzheimer disease (AD) is the most common neurodegenerative disease worldwide. The pathological hallmark of AD is the presence of senile plaques in the brain, which are accumulations of amyloid-β peptide (Aβ) ending at the 42nd residue (i.e. Aβ42), which is produced through multistep cleavage by γ-secretase. Thus, methods to regulate γ-secretase activity to attenuate the production of Aβ42 are in urgent demand towards the development of treatments for AD. We and others have demonstrated that γ-secretase activity is affected by its localization and ambient environment. In particular, an increase in Aβ42 production is correlated with the intracellular transport of γ-secretase and endosomal maturation-dependent luminal acidification. In this study, we focused on the mechanism by which γ-secretase affects Aβ42 production together with alterations in pH. Histidine is known to function as a pH sensor in many proteins, to regulate their activities through the protonation state of the imidazole side chain. Among the histidines facing the luminal side of presenilin (PS) 1, which is the catalytic subunit of γ-secretase, point mutations at H131 had no effect on the Aβ42 production ratio in an acidic environment. We also observed an increase in Aβ42 ratio when histidine was introduced into N137 of PS2, which is the corresponding residue of H131 in PS1. These results indicated that H131 serves as the pH sensor in PS1, which contains γ-secretase, to regulate Aβ42 production depending on the luminal pH. Our findings provide new insights into therapeutic strategies for AD targeting endosomes or the intracellular transport of γ-secretase.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Aki Hatano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunihiko Kanatsu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Cai T, Morishima K, Takagi-Niidome S, Tominaga A, Tomita T. Conformational Dynamics of Transmembrane Domain 3 of Presenilin 1 Is Associated with the Trimming Activity of γ-Secretase. J Neurosci 2019; 39:8600-8610. [PMID: 31527118 PMCID: PMC6807281 DOI: 10.1523/jneurosci.0838-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates the toxic species of the amyloid-β peptide (Aβ) that is responsible for the pathology of Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which is a polytopic membrane protein with a hydrophilic catalytic pore. The length of the C terminus of Aβ is proteolytically determined by its processive trimming by γ-secretase, although the precise mechanism still remains largely unknown. Here, we identified that transmembrane domain (TMD) 3 of human PS1 is involved in the formation of the intramembranous hydrophilic pore. Notably, the water accessibility of TMD3 was greatly altered by point mutations and compounds, which modify γ-secretase activity. The changes in the water accessibility of TMD3 was also correlated with Aβ42 production. Moreover, crosslinking between TMD3 and TMD7 resulted in a loss of sensitivity to a γ-secretase modulator that reduces Aβ42 production. Therefore, our findings indicate that the conformational dynamics of TMD3 is a prerequisite for regulation of the Aβ trimming activity of γ-secretase.SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce the level of toxic amyloid-β species is thought to be a therapeutic strategy for Alzheimer disease. However, the detailed mechanism of the regulation of amyloid-β production, as well as the structure-and-activity relationship of γ-secretase remains unclear. Here we identified that the water accessibility around transmembrane domain 3 in presenilin 1 was increased along with a reduction in toxic amyloid-β production. Our findings demonstrate how the structure of presenilin 1 dynamically changes during amyloid-β production, and provides insights toward the development of treatments against Alzheimer disease.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Kanan Morishima
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shizuka Takagi-Niidome
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Aya Tominaga
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
15
|
Abstract
γ-Secretase is a membrane-embedded protease complex, with presenilin as the catalytic component containing two transmembrane aspartates in the active site. With more than 90 known substrates, the γ-secretase complex is considered "the proteasome of the membrane", with central roles in biology and medicine. The protease carries out hydrolysis within the lipid bilayer to cleave the transmembrane domain of the substrate multiple times before releasing secreted products. For many years, elucidation of γ-secretase structure and function largely relied on small-molecule probes and mutagenesis. Recently, however, advances in cryo-electron microscopy have led to the first detailed structures of the protease complex. Two new reports of structures of γ-secretase bound to membrane protein substrates provide great insight into the nature of substrate recognition and how Alzheimer's disease-causing mutations in presenilin might alter substrate binding and processing. These new structures offer a powerful platform for elucidating enzyme mechanisms, deciphering effects of disease-causing mutations, and advancing Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
16
|
Götz A, Mylonas N, Högel P, Silber M, Heinel H, Menig S, Vogel A, Feyrer H, Huster D, Luy B, Langosch D, Scharnagl C, Muhle-Goll C, Kamp F, Steiner H. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophys J 2019; 116:2103-2120. [PMID: 31130234 PMCID: PMC6554489 DOI: 10.1016/j.bpj.2019.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Intramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.
Collapse
Affiliation(s)
- Alexander Götz
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Nadine Mylonas
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hannes Heinel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Simon Menig
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Hannes Feyrer
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dieter Langosch
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Christina Scharnagl
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany.
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
17
|
Götz A, Högel P, Silber M, Chaitoglou I, Luy B, Muhle-Goll C, Scharnagl C, Langosch D. Increased H-Bond Stability Relates to Altered ε-Cleavage Efficiency and Aβ Levels in the I45T Familial Alzheimer's Disease Mutant of APP. Sci Rep 2019; 9:5321. [PMID: 30926830 PMCID: PMC6440955 DOI: 10.1038/s41598-019-41766-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Cleavage of the amyloid precursor protein's (APP) transmembrane domain (TMD) by γ-secretase is a crucial step in the aetiology of Alzheimer's Disease (AD). Mutations in the APP TMD alter cleavage and lead to familial forms of AD (FAD). The majority of FAD mutations shift the preference of initial cleavage from ε49 to ε48, thus raising the AD-related Aβ42/Aβ40 ratio. The I45T mutation is among the few FAD mutations that do not alter ε-site preference, while it dramatically reduces the efficiency of ε-cleavage. Here, we investigate the impact of the I45T mutation on the backbone dynamics of the substrate TMD. Amide exchange experiments and molecular dynamics simulations in solvent and a lipid bilayer reveal an increased stability of amide hydrogen bonds at the ζ- and γ-cleavage sites. Stiffening of the H-bond network is caused by an additional H-bond between the T45 side chain and the TMD backbone, which alters dynamics within the cleavage domain. In particular, the increased H-bond stability inhibits an upward movement of the ε-sites in the I45T mutant. Thus, an altered presentation of ε-sites to the active site of γ-secretase as a consequence of restricted local flexibility provides a rationale for reduced ε-cleavage efficiency of the I45T mutant.
Collapse
Grants
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Helmholtz-Gemeinschaft (Helmholtz Association)
- Leibniz Supercomputing Centre: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstraße 1, 85748 Garching bei München, Germany, WEB: https://www.lrz.de Gauss Centre for Supercomputing: GCS-Geschäftsstelle Bonn, Ahrstrasse 45, 53175 Bonn, Germany, WEB: http://www.gauss-centre.eu
- Center for Integrated Protein Science: Munich Center For Integrated Protein Science (CIPSM), Butenandtstr. 5 - 13, 81377 Munich, Germany, WEB: http://www.cipsm.de/ Leibniz Supercomputing Centre: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstraße 1, 85748 Garching bei München, Germany, WEB: https://www.lrz.de
Collapse
Affiliation(s)
- Alexander Götz
- Lehrstuhl für Physik synthetischer Biosysteme (E14), Technische Universität München, Maximus-von-Imhof Forum 4, 85354, Freising, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Iro Chaitoglou
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christina Scharnagl
- Lehrstuhl für Physik synthetischer Biosysteme (E14), Technische Universität München, Maximus-von-Imhof Forum 4, 85354, Freising, Germany.
| | - Dieter Langosch
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
18
|
Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol 2019; 218:644-663. [PMID: 30626721 PMCID: PMC6363461 DOI: 10.1083/jcb.201806205] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 01/13/2023] Open
Abstract
Intramembrane proteolysis of transmembrane substrates by the presenilin-γ-secretase complex is preceded and regulated by shedding of the substrate's ectodomain by α- or β-secretase. We asked whether β- and γ-secretases interact to mediate efficient sequential processing of APP, generating the amyloid β (Aβ) peptides that initiate Alzheimer's disease. We describe a hitherto unrecognized multiprotease complex containing active β- and γ-secretases. BACE1 coimmunoprecipitated and cofractionated with γ-secretase in cultured cells and in mouse and human brain. An endogenous high molecular weight (HMW) complex (∼5 MD) containing β- and γ-secretases and holo-APP was catalytically active in vitro and generated a full array of Aβ peptides, with physiological Aβ42/40 ratios. The isolated complex responded properly to γ-secretase modulators. Alzheimer's-causing mutations in presenilin altered the Aβ42/40 peptide ratio generated by the HMW β/γ-secretase complex indistinguishably from that observed in whole cells. Thus, Aβ is generated from holo-APP by a BACE1-γ-secretase complex that provides sequential, efficient RIP processing of full-length substrates to final products.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Li Ding
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michael S Wolfe
- University of Kansas School of Pharmacy, Department of Medical Chemistry, Lawrence, KS
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Imai S, Cai T, Yoshida C, Tomita T, Futai E. Specific mutations in presenilin 1 cause conformational changes in γ-secretase to modulate amyloid β trimming. J Biochem 2018; 165:37-46. [DOI: 10.1093/jb/mvy081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- So Imai
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiazaaoba, Aobaku, Sendai, Miyagi, Japan
| | - Tetsuo Cai
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Chika Yoshida
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiazaaoba, Aobaku, Sendai, Miyagi, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Eugene Futai
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiazaaoba, Aobaku, Sendai, Miyagi, Japan
| |
Collapse
|
20
|
Cai T, Tomita T. Structural Analysis of Target Protein by Substituted Cysteine Accessibility Method. Bio Protoc 2018; 8:e2470. [PMID: 34395783 DOI: 10.21769/bioprotoc.2470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 11/02/2022] Open
Abstract
Substituted Cysteine Accessibility Method (SCAM) is a biochemical approach to investigate the water accessibility or the spatial distance of particular cysteine residues substituted in the target protein. Protein topology and structure can be annotated by labeling with methanethiosulfonate reagents that specifically react with the cysteine residues facing the hydrophilic environment, even within the transmembrane domain. Cysteine crosslinking experiments provide us with information about the distance between two cysteine residues. The combination of these methods enables us to obtain information about the structural changes of the target protein. Here, we describe the detailed protocol for structural analysis using SCAM.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
22
|
Götz A, Scharnagl C. Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease. PLoS One 2018; 13:e0200077. [PMID: 29966005 PMCID: PMC6028146 DOI: 10.1371/journal.pone.0200077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 02/02/2023] Open
Abstract
The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.
Collapse
Affiliation(s)
- Alexander Götz
- Technical University of Munich, Chair of Physics of Synthetic Biological Systems, Freising, Germany
| | - Christina Scharnagl
- Technical University of Munich, Chair of Physics of Synthetic Biological Systems, Freising, Germany
| |
Collapse
|
23
|
Activation of γ-Secretase Trimming Activity by Topological Changes of Transmembrane Domain 1 of Presenilin 1. J Neurosci 2017; 37:12272-12280. [PMID: 29118109 DOI: 10.1523/jneurosci.1628-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Secretase is an intramembrane cleaving protease that is responsible for the generation of amyloid-β peptides, which are linked to the pathogenesis of Alzheimer disease. Recently, γ-secretase modulators (GSMs) have been shown to specifically decrease production of the aggregation-prone and toxic longer Aβ species, and concomitantly increase the levels of shorter Aβ. We previously found that phenylimidazole-type GSMs bind to presenilin 1 (PS1), the catalytic subunit of the γ-secretase, and allosterically modulate γ-secretase activity. However, the precise conformational alterations in PS1 remained unclear. Here we mapped the amino acid residues in PS1 that is crucial for the binding and pharmacological actions of E2012, a phenylimidazole-type GSM, using photoaffinity labeling and the substituted cysteine accessibility method. We also demonstrated that a piston-like vertical motion of transmembrane domain (TMD) 1 occurs during modulation of Aβ production. Taking these results together, we propose a model for the molecular mechanism of phenylimidazole-type GSMs, in which the trimming activity of γ-secretase is modulated by the position of the TMD1 of PS1 in the lipid bilayer.SIGNIFICANCE STATEMENT Reduction of the toxic longer amyloid-β peptide is one of the therapeutic approaches for Alzheimer disease. A subset of small compounds called γ-secretase modulators specifically decreases the longer amyloid-β production, although its mechanistic action remains unclear. Here we found that the modulator compound E2012 targets to the hydrophilic loop 1 of presenilin 1, which is a catalytic subunit of the γ-secretase. Moreover, E2012 triggers the piston movement of the transmembrane domain 1 of presenilin 1, which impacts on the γ-secretase activity. These results illuminate how γ-secretase modulators allosterically affect the proteolytic activity, and highlight the importance of the structural dynamics of presenilin 1 in the complexed process of the intramembrane cleavage.
Collapse
|
24
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
25
|
Probing the Structure and Function Relationships of Presenilin by Substituted-Cysteine Accessibility Method. Methods Enzymol 2017; 584:185-205. [DOI: 10.1016/bs.mie.2016.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
26
|
Stelzer W, Scharnagl C, Leurs U, Rand KD, Langosch D. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region. ChemistrySelect 2016. [DOI: 10.1002/slct.201601090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Walter Stelzer
- Lehrstuhl Chemie der Biopolymere; Technical University of Munich and Munich Center for Integrated Protein Science (CIPS ); Weihenstephaner Berg 3 85354 Freising Germany
| | - Christina Scharnagl
- Fakultät für Physik E14; Technical University of Munich; Maximus-von-Imhof-Forum 4 85354 Freising Germany
| | - Ulrike Leurs
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Kasper D. Rand
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Dieter Langosch
- Lehrstuhl Chemie der Biopolymere; Technical University of Munich and Munich Center for Integrated Protein Science (CIPS ); Weihenstephaner Berg 3 85354 Freising Germany
| |
Collapse
|
27
|
Kanatsu K, Tomita T. Membrane trafficking and proteolytic activity of γ-secretase in Alzheimer’s disease. Biol Chem 2016; 397:827-35. [DOI: 10.1515/hsz-2016-0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates various forms of amyloid-β peptides (Aβ) that accumulate in the brains of Alzheimer’s disease (AD) patients. The intracellular trafficking and subcellular localization of γ-secretase are linked to both qualitative and quantitative changes in Aβ production. However, the precise intracellular localization of γ-secretase as well as its detailed regulatory mechanisms have remained elusive. Recent genetic studies on AD provide ample evidence that alteration of the subcellular localization of γ-secretase contributes to the pathogenesis of AD. Here we review our current understanding of the intracellular membrane trafficking of γ-secretase, the association between its localization and proteolytic activity, and the possibility of γ-secretase as a therapeutic target against AD.
Collapse
|
28
|
The Role of Presenilin in Protein Trafficking and Degradation—Implications for Metal Homeostasis. J Mol Neurosci 2016; 60:289-297. [DOI: 10.1007/s12031-016-0826-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
|
29
|
Conformational Changes in Transmembrane Domain 4 of Presenilin 1 Are Associated with Altered Amyloid-β 42 Production. J Neurosci 2016; 36:1362-72. [PMID: 26818522 DOI: 10.1523/jneurosci.5090-14.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED γ-Secretase is an intramembrane-cleaving protease that produces amyloid-β peptide 42 (Aβ42), which is the toxic and aggregation-prone species of Aβ that causes Alzheimer's disease. Here, we used the substituted cysteine accessibility method to analyze the structure of transmembrane domains (TMDs) 4 and 5 of human presenilin 1 (PS1), a catalytic subunit of γ-secretase. We revealed that TMD4 and TMD5 face the intramembranous hydrophilic milieu together with TMD1, TMD6, TMD7, and TMD9 of PS1 to form the catalytic pore structure. Notably, we found a correlation in the distance between the cytosolic sides of TMD4/TMD7 and Aβ42 production levels, suggesting that allosteric conformational changes of the cytosolic side of TMD4 affect Aβ42-generating γ-secretase activity. Our results provide new insights into the relationship between the structure and activity of human PS1. SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce toxic amyloid-β peptide species is one plausible therapeutic approaches for Alzheimer's disease. However, precise mechanistic information of γ-secretase still remains unclear. Here we identified the conformational changes in transmembrane domains of presenilin 1 that affect the proteolytic activity of the γ-secretase. Our results highlight the importance of understanding the structural dynamics of presenilin 1 in drug development against Alzheimer's disease.
Collapse
|
30
|
Coburger I, Schaub Y, Roeser D, Hardes K, Maeder P, Klee N, Steinmetzer T, Imhof D, Diederich WE, Than ME. Identification of inhibitors of the transmembrane protease FlaK of Methanococcus maripaludis. Microbiologyopen 2016; 5:637-46. [PMID: 27038342 PMCID: PMC4985597 DOI: 10.1002/mbo3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
GxGD‐type intramembrane cleaving proteases (I‐CLiPs) form a family of proteolytic enzymes that feature an aspartate‐based catalytic mechanism. Yet, they structurally and functionally largely differ from the classical pepsin‐like aspartic proteases. Among them are the archaeal enzyme FlaK, processing its substrate FlaB2 during the formation of flagella and γ‐secretase, which is centrally involved in the etiology of the neurodegenerative Alzheimer's disease. We developed an optimized activity assay for FlaK and based on screening of a small in‐house library and chemical synthesis, we identified compound 9 as the first inhibitor of this enzyme. Our results show that this intramembrane protease differs from classical pepsin‐like aspartic proteases and give insights into the substrate recognition of this enzyme. By providing the needed tools to further study the enzymatic cycle of FlaK, our results also enable further studies towards a functional understanding of other GxGD‐type I‐CLiPs.
Collapse
Affiliation(s)
- Ina Coburger
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Yvonne Schaub
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Dirk Roeser
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Patrick Maeder
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Nina Klee
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Diana Imhof
- Institute of Pharmacy, Pharmaceutical Chemistry I, University of Bonn, Brühler Str. 7, Bonn, 53119, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Manuel E Than
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| |
Collapse
|
31
|
Elad N, De Strooper B, Lismont S, Hagen W, Veugelen S, Arimon M, Horré K, Berezovska O, Sachse C, Chávez-Gutiérrez L. The dynamic conformational landscape of gamma-secretase. J Cell Sci 2016; 128:589-98. [PMID: 25501811 PMCID: PMC4311135 DOI: 10.1242/jcs.164384] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structure and function of the gamma-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the gamma-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the gamma-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the csecretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid beta (Abeta) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme.
Collapse
Affiliation(s)
- Nadav Elad
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Authors for correspondence (; ; )
| | - Sam Lismont
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Wim Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Sarah Veugelen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Muriel Arimon
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Katrien Horré
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Oksana Berezovska
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
- Authors for correspondence (; ; )
| | - Lucía Chávez-Gutiérrez
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- Authors for correspondence (; ; )
| |
Collapse
|
32
|
Futai E, Osawa S, Cai T, Fujisawa T, Ishiura S, Tomita T. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities. J Biol Chem 2016; 291:435-46. [PMID: 26559975 PMCID: PMC4697183 DOI: 10.1074/jbc.m114.629287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 11/07/2015] [Indexed: 12/27/2022] Open
Abstract
γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.
Collapse
Affiliation(s)
- Eugene Futai
- From the Department of Molecular and Cell Biology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 981-8555, the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902,
| | - Satoko Osawa
- the Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences and
| | - Tetsuo Cai
- the Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences and Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoya Fujisawa
- From the Department of Molecular and Cell Biology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 981-8555
| | - Shoichi Ishiura
- the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902
| | - Taisuke Tomita
- the Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences and Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Molecular dynamics simulation study reveals potential substrate entry path into γ-secretase/presenilin-1. J Struct Biol 2015; 191:120-9. [DOI: 10.1016/j.jsb.2015.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022]
|
34
|
Cooperative roles of hydrophilic loop 1 and the C-terminus of presenilin 1 in the substrate-gating mechanism of γ-secretase. J Neurosci 2015; 35:2646-56. [PMID: 25673856 DOI: 10.1523/jneurosci.3164-14.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
γ-Secretase is a multisubunit protease complex that is responsible for generating amyloid-β peptides, which are associated with Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which contains an initial substrate-binding site that is distinct from the catalytic site. Processive cleavage is suggested in the intramembrane-cleaving mechanism of γ-secretase. However, it largely remains unknown as to how γ-secretase recognizes its substrate during proteolysis. Here, we identified that the α-helical structural region of hydrophilic loop 1 (HL1) and the C-terminal region of human PS1 are distinct substrate-binding sites. Mutational analyses revealed that substrate binding to the HL1 region is critical for both ε- and γ-cleavage, whereas binding to the C-terminal region hampers γ-cleavage. Moreover, we propose that substrate binding triggers conformational changes in PS1, rendering it suitable for catalysis. Our data provide new insights into the complicated catalytic mechanism of PS1.
Collapse
|
35
|
Kuo IY, Hu J, Ha Y, Ehrlich BE. Presenilin-like GxGD membrane proteases have dual roles as proteolytic enzymes and ion channels. J Biol Chem 2015; 290:6419-27. [PMID: 25609250 DOI: 10.1074/jbc.m114.629584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GxGD proteases function to cleave protein substrates within the membrane. As these proteases contain multiple transmembrane domains typical of ion channels, we examined if GxGD proteases also function as ion channels. We tested the putative dual function by examining two archeobacterial GxGD proteases (PSH and FlaK), with known three-dimensional structures. Both are in the same GxGD family as presenilin, a protein mutated in Alzheimer Disease. Here, we demonstrate that PSH and FlaK form cation channels in lipid bilayers. A mutation that affected the enzymatic activity of FlaK rendered the channel catalytically inactive and altered the ion selectivity, indicating that the ion channel and the catalytic activities are linked. We report that the GxGD proteases, PSH and FlaK, are true "chanzymes" with interdependent ion channel and protease activity conferred by a single structural domain embedded in the membrane, supporting the proposal that higher-order proteases, including presenilin, have channel function.
Collapse
Affiliation(s)
| | - Jian Hu
- From the Departments of Pharmacology and
| | - Ya Ha
- From the Departments of Pharmacology and
| | - Barbara E Ehrlich
- From the Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
36
|
De Strooper B, Chávez Gutiérrez L. Learning by Failing: Ideas and Concepts to Tackle γ-Secretases in Alzheimer's Disease and Beyond. Annu Rev Pharmacol Toxicol 2015; 55:419-37. [DOI: 10.1146/annurev-pharmtox-010814-124309] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bart De Strooper
- VIB Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, BE-3000 Leuven, Belgium
- Center for Human Genetics, Laboratory for the Research of Neurodegenerative Diseases, KU Leuven, BE-3000 Leuven, Belgium; ,
| | - Lucía Chávez Gutiérrez
- VIB Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, BE-3000 Leuven, Belgium
- Center for Human Genetics, Laboratory for the Research of Neurodegenerative Diseases, KU Leuven, BE-3000 Leuven, Belgium; ,
| |
Collapse
|
37
|
Morishima-Kawashima M. Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase. Front Physiol 2014; 5:463. [PMID: 25505888 PMCID: PMC4245903 DOI: 10.3389/fphys.2014.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/11/2014] [Indexed: 01/31/2023] Open
Abstract
Amyloid β-protein (Aβ) plays a central role in the pathogenesis of Alzheimer's disease, the most common age-associated neurodegenerative disorder. Aβ is generated through intramembrane proteolysis of the β-carboxyl terminal fragment (βCTF) of β-amyloid precursor protein (APP) by γ-secretase. The initial cleavage by γ-secretase occurs in the membrane/cytoplasm boundary of the βCTF, liberating the APP intracellular domain (AICD). The remaining βCTFs, which are truncated at the C-terminus (longer Aβs), are then cropped sequentially in a stepwise manner, predominantly at three residue intervals, to generate Aβ. There are two major Aβ product lines which generate Aβ40 and Aβ42 with concomitant release of three and two tripeptides, respectively. Additionally, many alternative cleavages occur, releasing peptides with three to six residues. These modulate the Aβ product lines and define the species and quantity of Aβ generated. Here, we review our current understanding of the intramembrane cleavage of the βCTF by γ-secretase, which may contribute to the future goal of developing an efficient therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Maho Morishima-Kawashima
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University Sapporo, Japan
| |
Collapse
|
38
|
Abstract
Presenilin is a membrane-embedded intramembrane-cleaving protease with a conserved catalytic G×GD motif. It is the catalytic subunit of γ-secretase, which plays critical roles in developmental biology and the molecular etiology of Alzheimer disease, together with three membrane protein cofactors, nicastrin, Aph-1 and Pen-2. Biochemical and enzymatic analyses have revealed that γ-secretase executes two types of proteolytic activities on a single substrate; an endopeptidase-like cleavage followed by carboxypeptidase-like processive cleavage. Utilizing small molecule inhibitors/modulators together with the substituted cysteine accessibility method, we identified certain residues and regions of presenilin that contribute to the formation of a catalytic pore structure within the lipid bilayer required for its intramembrane-cleaving activity. Recently, determination of the crystal structure of the archaeal presenilin homologue has confirmed the intramembranous location of the two conserved and essential aspartates. In this review, I will introduce the recent progresses in the understanding of the molecular mechanisms of action of this atypical protease.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Allosteric regulation of γ-secretase activity by a phenylimidazole-type γ-secretase modulator. Proc Natl Acad Sci U S A 2014; 111:10544-9. [PMID: 25009180 DOI: 10.1073/pnas.1402171111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease responsible for the generation of amyloid-β (Aβ) peptides. Recently, a series of compounds called γ-secretase modulators (GSMs) has been shown to decrease the levels of long toxic Aβ species (i.e., Aβ42), with a concomitant elevation of the production of shorter Aβ species. In this study, we show that a phenylimidazole-type GSM allosterically induces conformational changes in the catalytic site of γ-secretase to augment the proteolytic activity. Analyses using the photoaffinity labeling technique and systematic mutational studies revealed that the phenylimidazole-type GSM targets a previously unidentified extracellular binding pocket within the N-terminal fragment of presenilin (PS). Collectively, we provide a model for the mechanism of action of the phenylimidazole-type GSM in which binding at the luminal side of PS induces a conformational change in the catalytic center of γ-secretase to modulate Aβ production.
Collapse
|
40
|
Toyn JH, Thompson LA, Lentz KA, Meredith JE, Burton CR, Sankaranararyanan S, Guss V, Hall T, Iben LG, Krause CM, Krause R, Lin XA, Pierdomenico M, Polson C, Robertson AS, Denton RR, Grace JE, Morrison J, Raybon J, Zhuo X, Snow K, Padmanabha R, Agler M, Esposito K, Harden D, Prack M, Varma S, Wong V, Zhu Y, Zvyaga T, Gerritz S, Marcin LR, Higgins MA, Shi J, Wei C, Cantone JL, Drexler DM, Macor JE, Olson RE, Ahlijanian MK, Albright CF. Identification and Preclinical Pharmacology of the γ-Secretase Modulator BMS-869780. Int J Alzheimers Dis 2014; 2014:431858. [PMID: 25097793 PMCID: PMC4109680 DOI: 10.1155/2014/431858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/18/2014] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-β peptide (Aβ), particularly the 42-amino acid Aβ1-42, in the brain. Aβ1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aβ production. BMS-869780 is a potent GSM that decreased Aβ1-42 and Aβ1-40 and increased Aβ1-37 and Aβ1-38, without inhibiting overall levels of Aβ peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aβ1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aβ1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aβ1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aβ1-42 without Notch-related side effects.
Collapse
Affiliation(s)
- Jeremy H. Toyn
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Lorin A. Thompson
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Kimberley A. Lentz
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Jere E. Meredith
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Catherine R. Burton
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Sethu Sankaranararyanan
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Valerie Guss
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tracey Hall
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
- Preclinical Sciences, Alexion Pharmaceuticals, Inc 352 Knotter Drive, Cheshire, CT 06410, USA
| | - Lawrence G. Iben
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Carol M. Krause
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Rudy Krause
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Xu-Alan Lin
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Maria Pierdomenico
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Craig Polson
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alan S. Robertson
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - R. Rex Denton
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - James E. Grace
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - John Morrison
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Joseph Raybon
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Kimberly Snow
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Ramesh Padmanabha
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Michele Agler
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
- High Throughput Biology, Boehringer Ingelheim, 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Kim Esposito
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - David Harden
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Margaret Prack
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Sam Varma
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
- Stratford High School, 45 North Parade, Stratford, CT 06615, USA
| | - Victoria Wong
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
- External Research Solutions, WWMC, Pfizer World Wide Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - Yingjie Zhu
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
- Arvinas Inc, 5 Science Park, New Haven, CT 06511, USA
| | - Tatyana Zvyaga
- Lead Discovery and Lead Profiling, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Samuel Gerritz
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Lawrence R. Marcin
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mendi A. Higgins
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Jianliang Shi
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Cong Wei
- Discovery Analytical Sciences, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer World Wide Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - Joseph L. Cantone
- Discovery Analytical Sciences, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dieter M. Drexler
- Discovery Analytical Sciences, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - John E. Macor
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Richard E. Olson
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Michael K. Ahlijanian
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Charles F. Albright
- Exploratory Biology and Genomics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
41
|
Holmes O, Paturi S, Selkoe DJ, Wolfe MS. Pen-2 is essential for γ-secretase complex stability and trafficking but partially dispensable for endoproteolysis. Biochemistry 2014; 53:4393-406. [PMID: 24941111 PMCID: PMC4216188 DOI: 10.1021/bi500489j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
19-transmembrane γ-secretase complex generates the amyloid
β-peptide of Alzheimer’s disease by intramembrane proteolysis
of the β-amyloid precursor
protein. This complex is comprised of presenilin, Aph1, nicastrin,
and Pen-2. The exact function and mechanism of the highly conserved
Pen-2 subunit remain poorly understood. Using systematic mutagenesis,
we confirm and extend our understanding of which key regions and specific
residues play roles in various aspects of γ-secretase function,
including maturation, localization, and activity, but not processivity.
In general, mutations (1) within the first half of transmembrane domain
(TMD) 1 of Pen-2 decreased PS1 endoproteolysis and γ-secretase
proteolytic activity, (2) within the second half of TMD1 increased
proteolytic activity, (3) within the cytosolic loop region decreased
proteolytic activity, (4) within TMD2 decreased PS1 endoproteolysis,
(5) within the first half of TMD2 decreased proteolytic activity,
and (6) within C-terminal residues decreased proteolytic activity.
Specific mutational effects included N33A in TMD1 causing an increase
in γ-secretase complexes at the cell surface and a modest decrease
in stability and the previously unreported I53A mutation in the loop
region reducing stability 10-fold and proteolytic activity by half.
In addition, we confirm that minor PS1 endoproteolysis can occur in
the complete absence of Pen-2. Together, these data suggest that rather
than solely being a catalyst for γ-secretase endoproteolysis,
Pen-2 may also stabilize the complex prior to PS1 endoproteolysis,
allowing time for full assembly and proper trafficking.
Collapse
Affiliation(s)
- Oliver Holmes
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
42
|
Wanngren J, Lara P, Ojemalm K, Maioli S, Moradi N, Chen L, Tjernberg LO, Lundkvist J, Nilsson I, Karlström H. Changed membrane integration and catalytic site conformation are two mechanisms behind the increased Aβ42/Aβ40 ratio by presenilin 1 familial Alzheimer-linked mutations. FEBS Open Bio 2014; 4:393-406. [PMID: 24918054 PMCID: PMC4050182 DOI: 10.1016/j.fob.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Familial Alzheimer disease (FAD) mutations affect presenilin membrane integration. The transmembrane domains around the catalytic site are vulnerable to changes. All FAD mutations cause changes in the active site of the γ-secretase complex. The FAD mutants lead to a complex processing pattern of the amyloid precursor protein.
The enzyme complex γ-secretase generates amyloid β-peptide (Aβ), a 37–43-residue peptide associated with Alzheimer disease (AD). Mutations in presenilin 1 (PS1), the catalytical subunit of γ-secretase, result in familial AD (FAD). A unifying theme among FAD mutations is an alteration in the ratio Aβ species produced (the Aβ42/Aβ40 ratio), but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP) processing phenotype. Most mutations studied caused an increase in the Aβ42/Aβ40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aβ42/Aβ40 ratio did also display an impaired APP intracellular domain (AICD) formation and a lower total Aβ production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aβ42/Aβ40 ratio are associated with a decrease in total γ-secretase activity.
Collapse
Key Words
- AD, Alzheimer disease
- AICD, amyloid precursor protein intracellular domain
- APP, amyloid precursor protein
- Alzheimer disease
- Amyloid β-peptide
- Aβ, amyloid-β peptide
- BD8, blastocyst-derived embryonic stem cells
- Bis-Tris, 2-(bis(2-hydroxyethyl)amino)-2-(hydroxymethyl)propane-1,3-diol
- CHAPSO, 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid
- CRM, column-washed dog pancreas rough microsomes
- CTF, C-terminal fragment
- ER, endoplasmic reticulum
- Endo H, endoglycosidase H
- FAD, familial AD
- FLIM/FRET, Fluorescence Lifetime Imaging/ Fluorescence Resonance Energy Transfer
- GCB, γ-secretase inhibitor coupled to biotin
- GVP, Gal4VP16
- Lep, leader peptidase
- MGD, minimal glycosylation distance
- MSD, Meso Scale Discovery
- Membrane integration
- NTF, N-terminal fragment
- PS, presenilin
- Protein structure
- RM, rough microsomes
- TMD, transmembrane domains
- WT, wild type
- γ-Secretase
Collapse
Affiliation(s)
- Johanna Wanngren
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Lara
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Karin Ojemalm
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Silvia Maioli
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nasim Moradi
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Lu Chen
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars O Tjernberg
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | | | - IngMarie Nilsson
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Helena Karlström
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Ohki Y, Shimada N, Tominaga A, Osawa S, Higo T, Yokoshima S, Fukuyama T, Tomita T, Iwatsubo T. Binding of longer Aβ to transmembrane domain 1 of presenilin 1 impacts on Aβ42 generation. Mol Neurodegener 2014; 9:7. [PMID: 24410857 PMCID: PMC3896738 DOI: 10.1186/1750-1326-9-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022] Open
Abstract
Background Amyloid-β peptide ending at 42nd residue (Aβ42) is believed as a pathogenic peptide for Alzheimer disease. Although γ-secretase is a responsible protease to generate Aβ through a processive cleavage, the proteolytic mechanism of γ-secretase at molecular level is poorly understood. Results We found that the transmembrane domain (TMD) 1 of presenilin (PS) 1, a catalytic subunit for the γ-secretase, as a key modulatory domain for Aβ42 production. Aβ42-lowering and -raising γ-secretase modulators (GSMs) directly targeted TMD1 of PS1 and affected its structure. A point mutation in TMD1 caused an aberrant secretion of longer Aβ species including Aβ45 that are the precursor of Aβ42. We further found that the helical surface of TMD1 is involved in the binding of Aβ45/48 and that the binding was altered by GSMs as well as TMD1 mutation. Conclusions Binding between PS1 TMD1 and longer Aβ is critical for Aβ42 production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
44
|
Evin G. γ-secretase modulators: hopes and setbacks for the future of Alzheimer’s treatment. Expert Rev Neurother 2014; 8:1611-3. [DOI: 10.1586/14737175.8.11.1611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 2014; 9:661-79. [DOI: 10.1586/ern.09.24] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Wolfe MS. Toward the structure of presenilin/γ-secretase and presenilin homologs. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2886-97. [PMID: 24099007 PMCID: PMC3801419 DOI: 10.1016/j.bbamem.2013.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 01/30/2023]
Abstract
Presenilin is the catalytic component of the γ-secretase complex, a membrane-embedded aspartyl protease that plays a central role in biology and in the pathogenesis of Alzheimer's disease. Upon assembly with its three protein cofactors (nicastrin, Aph-1 and Pen-2), presenilin undergoes autoproteolysis into two subunits, each of which contributes one of the catalytic aspartates to the active site. A family of presenilin homologs, including signal peptide peptidase, possess proteolytic activity without the need for other protein factors, and these simpler intramembrane aspartyl proteases have given insight into the action of presenilin within the γ-secretase complex. Cellular and molecular studies support a nine-transmembrane topology for presenilins and their homologs, and small-molecule inhibitors and cysteine scanning with crosslinking have suggested certain presenilin residues and regions that contribute to substrate recognition and handling. Identification of partial complexes has also offered clues to protein-protein interactions within the γ-secretase complex. Biophysical methods have allowed 3D views of the γ-secretase complex and presenilins. Most recently, the crystal structure of a microbial presenilin homolog has confirmed a nine-transmembrane topology and intramembranous location and proximity of the two conserved and essential aspartates. The crystal structure also provides a platform for the formulation of specific hypotheses regarding substrate interaction and catalysis as well as the pathogenic mechanism of Alzheimer-causing presenilin mutations. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 754, Boston, MA 02115 USA.
| |
Collapse
|
47
|
Smolarkiewicz M, Skrzypczak T, Wojtaszek P. The very many faces of presenilins and the γ-secretase complex. PROTOPLASMA 2013; 250:997-1011. [PMID: 23504135 PMCID: PMC3788181 DOI: 10.1007/s00709-013-0494-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/01/2013] [Indexed: 05/02/2023]
Abstract
Presenilin is a central, catalytic component of the γ-secretase complex which conducts intramembrane cleavage of various protein substrates. Although identified and mainly studied through its role in the development of amyloid plaques in Alzheimer disease, γ-secretase has many other important functions. The complex seems to be evolutionary conserved throughout the Metazoa, but recent findings in plants and Dictyostelium discoideum as well as in archeons suggest that its evolution and functions might be much more diversified than previously expected. In this review, a selective survey of the multitude of functions of presenilins and the γ-secretase complex is presented. Following a brief overview of γ-secretase structure, assembly and maturation, three functional aspects are analyzed: (1) the role of γ-secretase in autophagy and phagocytosis; (2) involvement of the complex in signaling related to endocytosis; and (3) control of calcium fluxes by presenilins.
Collapse
Affiliation(s)
- Michalina Smolarkiewicz
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Tomasz Skrzypczak
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
48
|
Zhang S, Zhang M, Cai F, Song W. Biological function of Presenilin and its role in AD pathogenesis. Transl Neurodegener 2013; 2:15. [PMID: 23866842 PMCID: PMC3718700 DOI: 10.1186/2047-9158-2-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/14/2013] [Indexed: 01/06/2023] Open
Abstract
Presenilins (PSs) are the catalytic core of γ-secretase complex. However, the mechanism of FAD-associated PS mutations in AD pathogenesis still remains elusive. Here we review the general biology and mechanism of γ-secretase and focus on the catalytic components – presenilins and their biological functions and contributions to the AD pathogenesis. The functions of presenilins are divided into γ-secretase dependent and γ-secretase independent ones. The γ-secretase dependent functions of presenilins are exemplified by the sequential cleavages in the processing of APP and Notch; the γ-secretase independent functions of presenilins include stabilizing β-catenin in Wnt signaling pathway, regulating calcium homeostasis and their interaction with synaptic transmission.
Collapse
Affiliation(s)
- Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
49
|
De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med 2013; 2:a006304. [PMID: 22315713 DOI: 10.1101/cshperspect.a006304] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, Leuven Institute for Neurodegenerative Diseases, KULeuven, 3000 Leuven, Belgium; Department of Molecular and Developmental Genetics, VIB, 3000, Leuven, Belgium
| | | | | |
Collapse
|
50
|
Tomita T, Iwatsubo T. Structural biology of presenilins and signal peptide peptidases. J Biol Chem 2013; 288:14673-80. [PMID: 23585568 DOI: 10.1074/jbc.r113.463281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presenilin and signal peptide peptidase are multispanning intramembrane-cleaving proteases with a conserved catalytic GxGD motif. Presenilin comprises the catalytic subunit of γ-secretase, a protease responsible for the generation of amyloid-β peptides causative of Alzheimer disease. Signal peptide peptidase proteins are implicated in the regulation of the immune system. Both protease family proteins have been recognized as druggable targets for several human diseases, but their detailed structure still remains unknown. Recently, the x-ray structures of some archaeal GxGD proteases have been determined. We review the recent progress in biochemical and biophysical probing of the structure of these atypical proteases.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|