1
|
Yoshinaga Y, Sato N. Reach-to-Grasp and tactile discrimination task: A new task for the study of sensory-motor learning. Behav Brain Res 2024; 466:115007. [PMID: 38648867 DOI: 10.1016/j.bbr.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Although active touch in rodents arises from the forepaws as well as whiskers, most research on active touch only focuses on whiskers. This results in a paucity of tasks designed to assess the process of active touch with a forepaw. We develop a new experimental task, the Reach-to-Grasp and Tactile Discrimination task (RGTD task), to examine active touch with a forepaw in rodents, particularly changes in processes of active touch during motor skill learning. In the RGTD task, animals are required to (1) extend their forelimb to an object, (2) grasp the object, and (3) manipulate the grasped object with the forelimb. The animals must determine the direction of the manipulation based on active touch sensations arising during the period of the grasping. In experiment 1 of the present study, we showed that rats can learn the RGTD task. In experiment 2, we confirmed that the rats are capable of reversal learning of the RGTD task. The RGTD task shared most of the reaching movements involved with conventional forelimb reaching tasks. From the standpoint of a discrimination task, the RGTD task enables rigorous experimental control, for example by removing bias in the stimulus-response correspondence, and makes it possible to utilize diverse experimental procedures that have been difficult in prior tasks.
Collapse
Affiliation(s)
- Yudai Yoshinaga
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan; Center for Applied Psychological Science (CAPS), Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
2
|
Mishra W, Kheradpezhouh E, Arabzadeh E. Activation of M1 cholinergic receptors in mouse somatosensory cortex enhances information processing and detection behaviour. Commun Biol 2024; 7:3. [PMID: 38168628 PMCID: PMC10761830 DOI: 10.1038/s42003-023-05699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
To optimise sensory representations based on environmental demands, the activity of cortical neurons is regulated by neuromodulators such as Acetylcholine (ACh). ACh is implicated in cognitive functions including attention, arousal and sleep cycles. However, it is not clear how specific ACh receptors shape the activity of cortical neurons in response to sensory stimuli. Here, we investigate the role of a densely expressed muscarinic ACh receptor M1 in information processing in the mouse primary somatosensory cortex and its influence on the animal's sensitivity to detect vibrotactile stimuli. We show that M1 activation results in faster and more reliable neuronal responses, manifested by a significant reduction in response latencies and the trial-to-trial variability. At the population level, M1 activation reduces the network synchrony, and thus enhances the capacity of cortical neurons in conveying sensory information. Consistent with the neuronal findings, we show that M1 activation significantly improves performances in a vibriotactile detection task.
Collapse
Affiliation(s)
- Wricha Mishra
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
3
|
Rubene D, Low M, Brodin A. Birds differentially prioritize visual and olfactory foraging cues depending on habitat of origin and sex. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221336. [PMID: 36778952 PMCID: PMC9905992 DOI: 10.1098/rsos.221336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Animals interpret their environment by combining information from multiple senses. The relative usefulness of different senses may vary between species, habitats and sexes; yet, how multimodal stimuli are integrated and prioritized is unknown for most taxa. We experimentally assessed foraging preferences of great tits (Parus major) to test whether urban and forest individuals prioritize visual and olfactory cues differently during foraging. We trained 13 wild-caught birds to associate multimodal (colour + odour) cues with a food reward and assessed their foraging preferences in a cue-separation test. In this, the birds could choose between the multimodal training cue and its olfactory or visual components. Our results suggest that the birds did not perceive multimodal cues in an integrated way, as their response was not stronger than for unimodal cue components. Urban birds preferred olfactory cues, while forest birds preferred visual cues. Nevertheless, female birds preferred the multimodal cue, while males foraged more randomly with respect to which cue was present. These findings contribute to our understanding of the relative roles of vision and olfaction in bird foraging behaviour. Future work should focus on how habitat- and sex-specific sensory prioritization modifies bird foraging behaviour and foraging success in the context of urban adaptations across populations.
Collapse
Affiliation(s)
- Diana Rubene
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Brodin
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Oude Lohuis MN, Pie JL, Marchesi P, Montijn JS, de Kock CPJ, Pennartz CMA, Olcese U. Multisensory task demands temporally extend the causal requirement for visual cortex in perception. Nat Commun 2022; 13:2864. [PMID: 35606448 PMCID: PMC9126973 DOI: 10.1038/s41467-022-30600-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity. How primary sensory cortices contribute to decision making remains poorly understood. Here the authors report that increasing task demands extend the temporal window in which the primary visual cortex is required for detecting identical stimuli.
Collapse
|
5
|
Waiblinger C, McDonnell ME, Reedy AR, Borden PY, Stanley GB. Emerging experience-dependent dynamics in primary somatosensory cortex reflect behavioral adaptation. Nat Commun 2022; 13:534. [PMID: 35087056 PMCID: PMC8795122 DOI: 10.1038/s41467-022-28193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Behavioral experience and flexibility are crucial for survival in a constantly changing environment. Despite evolutionary pressures to develop adaptive behavioral strategies in a dynamically changing sensory landscape, the underlying neural correlates have not been well explored. Here, we use genetically encoded voltage imaging to measure signals in primary somatosensory cortex (S1) during sensory learning and behavioral adaptation in the mouse. In response to changing stimulus statistics, mice adopt a strategy that modifies their detection behavior in a context dependent manner as to maintain reward expectation. Surprisingly, neuronal activity in S1 shifts from simply representing stimulus properties to transducing signals necessary for adaptive behavior in an experience dependent manner. Our results suggest that neuronal signals in S1 are part of an adaptive framework that facilitates flexible behavior as individuals gain experience, which could be part of a general scheme that dynamically distributes the neural correlates of behavior during learning. Waiblinger et al. investigate the role of primary sensory cortex in flexible behaviors. They show that neuronal signals in S1 are part of an adaptive and dynamic framework that facilitates flexible behavior as an individual gains experience, indicating a role for S1 in long-term adaptive strategies.
Collapse
Affiliation(s)
- Christian Waiblinger
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Megan E McDonnell
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - April R Reedy
- Integrated Cellular Imaging Core, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Peter Y Borden
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Lee CCY, Kheradpezhouh E, Diamond ME, Arabzadeh E. State-Dependent Changes in Perception and Coding in the Mouse Somatosensory Cortex. Cell Rep 2021; 32:108197. [PMID: 32997984 DOI: 10.1016/j.celrep.2020.108197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
An animal's behavioral state is reflected in the dynamics of cortical population activity and its capacity to process sensory information. To better understand the relationship between behavioral states and information processing, mice are trained to detect varying amplitudes of whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons in the vibrissal primary somatosensory cortex are imaged across different behavioral states, defined based on detection performance (low to high-state) and pupil diameter. The neurometric curve in each behavioral state mirrors the corresponding psychometric performance, with calcium signals predictive of the animal's choice. High behavioral states are associated with lower network synchrony, extending over shorter cortical distances. The decrease in correlation across neurons in high state results in enhanced information transmission capacity at the population level. The observed state-dependent changes suggest that the coding regime within the first stage of cortical processing may underlie adaptive routing of relevant information through the sensorimotor system.
Collapse
Affiliation(s)
- Conrad C Y Lee
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia.
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia
| | - Mathew E Diamond
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia; Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Farsinejad A, Derakhshani A, Arabzadeh E, Sheibani V. Transplantation of rat dental pulp stem cells facilities post-lesion recovery in the somatosensory whisker cortex of male Wistar rats. Brain Res Bull 2021; 173:150-161. [PMID: 33964348 DOI: 10.1016/j.brainresbull.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Damage to somatosensory "barrel" cortex reduces the rats' behavioral sensitivity in discrimination of tactile stimuli. Here, we examined how transplantation of stem cells into the lesioned barrel cortex can help in recovery of sensory capacities. We induced mechanical lesions in the right barrel cortex area of male rats. Three days after lesioning, rats received one of three transplantation types: un-differentiated dental pulp stem cells (U-DPSCs) or differentiated dental pulp stem cells (D-DPSCs), or cell medium (vehicle). A fourth group of rats were control without any Surgery. For 4 consecutive weeks, starting one week after transplantation, we evaluated the rats' preference to explore novel textures as a measure of sensory discrimination ability, also measured the expression of glial fibrillary acidic protein (GFAP), Olig 2, nestin, neuronal nuclei (NeuN), brain-derived neurotrophic factor (BDNF) and neuroligin1 by immunohistochemistry and western blotting. Unilateral mechanical lesion decreased the rats' preferential exploration of novel textures compared to the control group across the 4-week behavioral tests. Following stem cell therapy, the rats' performance significantly improved at week 2-4 compared to the vehicle group. Compared to the control group, there was a significant decrease in the expression of nestin, NeuN, Olig 2, BDNF, neuroligin1 and a significant increase in the expression of GFAP in the vehicle group. The expression of the neural markers was significantly higher in DPSCs compared with the vehicle group whereas GFAP level was lower in DPSCs compared to vehicle. We found that DPSCs therapy affected a range of neuronal markers in the barrel cortex post lesion, and improved the rats' recovery for sensory discrimination.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Arabzadeh
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Ramamurthy DL, Dodson HK, Krubitzer LA. Developmental plasticity of texture discrimination following early vision loss in the marsupial Monodelphis domestica. J Exp Biol 2021. [PMCID: PMC8181249 DOI: 10.1242/jeb.236646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Behavioral strategies that depend on sensory information are not immutable; rather they can be shaped by the specific sensory context in which animals develop. This behavioral plasticity depends on the remarkable capacity of the brain to reorganize in response to alterations in the sensory environment, particularly when changes in sensory input occur at an early age. To study this phenomenon, we utilize the short-tailed opossum, a marsupial that has been a valuable animal model to study developmental plasticity due to the extremely immature state of its nervous system at birth. Previous studies in opossums have demonstrated that removal of retinal inputs early in development results in profound alterations to cortical connectivity and functional organization of visual and somatosensory cortex; however, behavioral consequences of this plasticity are not well understood. We trained early blind and sighted control opossums to perform a two-alternative forced choice texture discrimination task. Whisker trimming caused an acute deficit in discrimination accuracy for both groups, indicating the use of a primarily whisker-based strategy to guide choices based on tactile cues. Mystacial whiskers were important for performance in both groups; however, genal whiskers only contributed to behavioral performance in early blind animals. Early blind opossums significantly outperformed their sighted counterparts in discrimination accuracy, with discrimination thresholds that were lower by ∼75 μm. Our results support behavioral compensation following early blindness using tactile inputs, especially the whisker system.
Collapse
Affiliation(s)
- Deepa L. Ramamurthy
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Heather K. Dodson
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Leah A. Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Psychology, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
9
|
Zuo Y, Huang Y, Wu D, Wang Q, Wang Z. Spike Phase Shift Relative to Beta Oscillations Mediates Modality Selection. Cereb Cortex 2020; 30:5431-5448. [PMID: 32494807 DOI: 10.1093/cercor/bhaa125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
How does the brain selectively process signals from stimuli of different modalities? Coherent oscillations may function in coordinating communication between neuronal populations simultaneously involved in such cognitive behavior. Beta power (12-30 Hz) is implicated in top-down cognitive processes. Here we test the hypothesis that the brain increases encoding and behavioral influence of a target modality by shifting the relationship of neuronal spike phases relative to beta oscillations between primary sensory cortices and higher cortices. We simultaneously recorded neuronal spike and local field potentials in the posterior parietal cortex (PPC) and the primary auditory cortex (A1) when male rats made choices to either auditory or visual stimuli. Neuronal spikes exhibited modality-related phase locking to beta oscillations during stimulus sampling, and the phase shift between neuronal subpopulations demonstrated faster top-down signaling from PPC to A1 neurons when animals attended to auditory rather than visual stimuli. Importantly, complementary to spike timing, spike phase predicted rats' attended-to target in single trials, which was related to the animals' performance. Our findings support a candidate mechanism that cortices encode targets from different modalities by shifting neuronal spike phase. This work may extend our understanding of the importance of spike phase as a coding and readout mechanism.
Collapse
Affiliation(s)
- Yanfang Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dingcheng Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingxiu Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
10
|
Esmaeili V, Diamond ME. Neuronal Correlates of Tactile Working Memory in Prefrontal and Vibrissal Somatosensory Cortex. Cell Rep 2020; 27:3167-3181.e5. [PMID: 31189103 PMCID: PMC6581739 DOI: 10.1016/j.celrep.2019.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Tactile working memory engages a broad network of cortical regions in primates. To assess whether the conclusions drawn from primates apply to rodents, we examined the vibrissal primary somatosensory cortex (vS1) and the prelimbic cortex (PL) in a delayed comparison task. Rats compared the speeds of two vibrissal vibrations, stimulus1 and stimulus2, separated by a delay of 2 s. Neuronal firing rates in vS1 and PL encode both stimuli in real time. Across the delay, the stimulus1 representation declines more precipitously in vS1 than in PL. Theta-band local field potential (LFP) coherence between vS1 and PL peaks at trial onset and remains elevated during the interstimulus interval; simultaneously, vS1 spikes become phase locked to PL LFP. Phase locking is stronger on correct (versus error) trials. Tactile working memory in rats appears to be mediated by a posterior (vS1) to anterior (PL) flow of information, with performance facilitated through coherent LFP oscillation. Rats compared the speeds of two sequential vibrissal vibrations, separated by 2 s Neurons in the primary somatosensory (vS1) and prelimbic (PL) cortex coded the stimuli Theta local field potential coherence between vS1 and PL peaked at trial onset Intracortical coherent oscillations may play a role in rat tactile working memory
Collapse
Affiliation(s)
- Vahid Esmaeili
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
11
|
Xu J, Zommara NM, Ounjai K, Takahashi M, Kobayashi S, Matsuda T, Lauwereyns J. Urgency Promotes Affective Disengagement: Effects From Bivalent Cues on Preference Formation for Abstract Images. Front Psychol 2020; 11:1404. [PMID: 32655459 PMCID: PMC7325338 DOI: 10.3389/fpsyg.2020.01404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Although previous research has characterized the important role for spatial and affective pre-cues in the control of visual attention, less is known about the impact of pre-cues on preference formation. In preference formation, the gaze cascade phenomenon suggests that the gaze serves both to enhance and express “liking” during value-based decision-making. This phenomenon has been interpreted as a type of Pavlovian approach toward preferred objects. Decision-making here reflects a process of gradual commitment in which the gaze functions as a precursor to choice; by this account, overt attention produces a necessarily positive, additive effect on the value of the attended object. The implication is that drawing attention to an object should initiate, and therefore promote, preference formation for that object. Alternatively, information-integration models of attention propose that attention produces a multiplicative effect on the value of the attended object, implying that negative information can impede preference formation. To pitch the gradual-commitment hypothesis against the information-integration hypothesis, we conducted four experiments that combined the spatial-cueing paradigm with a value-based choice paradigm. In each trial in all experiments, subjects were presented with an irrelevant, peripheral pre-cue for a duration of 500 ms, followed by a 500 ms blank, and then a pair of abstract images (one at the pre-cued position; one in the opposite hemifield). The subjects were asked to choose their preferred abstract image by pressing the corresponding button. We manipulated the type of pre-cues (images of faces versus foods; with varying affective associations) and the time constraints (a deadline of 1,500 ms versus self-paced). Overall, the choice data showed a clear pattern of influence from the pre-cues, such that, given a deadline, abstract images were chosen less often if they had been preceded by a pre-cue with a negative affective association (both for face and food images). Analyses of the gaze data showed the emergence of significant gaze biases in line with the subjects’ choices. Taken together, the data pattern provided support for the information-integration hypothesis, particularly under urgency. When tasked with a speeded preference choice, subjects showed affective disengagement following pre-cues that carried a negative association.
Collapse
Affiliation(s)
- Ji Xu
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kajornvut Ounjai
- Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | | | | | | | - Johan Lauwereyns
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan.,Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Vecchia D, Beltramo R, Vallone F, Chéreau R, Forli A, Molano-Mazón M, Bawa T, Binini N, Moretti C, Holtmaat A, Panzeri S, Fellin T. Temporal Sharpening of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex. Curr Biol 2020; 30:1589-1599.e10. [PMID: 32169206 PMCID: PMC7198976 DOI: 10.1016/j.cub.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
The timing of stimulus-evoked spikes encodes information about sensory stimuli. Here we studied the neural circuits controlling this process in the mouse primary somatosensory cortex. We found that brief optogenetic activation of layer V pyramidal cells just after whisker deflection modulated the membrane potential of neurons and interrupted their long-latency whisker responses, increasing their accuracy in encoding whisker deflection time. In contrast, optogenetic inhibition of layer V during either passive whisker deflection or active whisking decreased accuracy in encoding stimulus or touch time, respectively. Suppression of layer V pyramidal cells increased reaction times in a texture discrimination task. Moreover, two-color optogenetic experiments revealed that cortical inhibition was efficiently recruited by layer V stimulation and that it mainly involved activation of parvalbumin-positive rather than somatostatin-positive interneurons. Layer V thus performs behaviorally relevant temporal sharpening of sensory responses through circuit-specific recruitment of cortical inhibition.
Collapse
Affiliation(s)
- Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Riccardo Beltramo
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Vallone
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Ronan Chéreau
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Manuel Molano-Mazón
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tanika Bawa
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Noemi Binini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy.
| |
Collapse
|
13
|
Abstract
Neural activity and behavior are both notoriously variable, with responses differing widely between repeated presentation of identical stimuli or trials. Recent results in humans and animals reveal that these variations are not random in their nature, but may in fact be due in large part to rapid shifts in neural, cognitive, and behavioral states. Here we review recent advances in the understanding of rapid variations in the waking state, how variations are generated, and how they modulate neural and behavioral responses in both mice and humans. We propose that the brain has an identifiable set of states through which it wanders continuously in a nonrandom fashion, owing to the activity of both ascending modulatory and fast-acting corticocortical and subcortical-cortical neural pathways. These state variations provide the backdrop upon which the brain operates, and understanding them is critical to making progress in revealing the neural mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA;
| | - Dennis B Nestvogel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA;
| | - Biyu J He
- Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
14
|
Gharaei S, Honnuraiah S, Arabzadeh E, Stuart GJ. Superior colliculus modulates cortical coding of somatosensory information. Nat Commun 2020; 11:1693. [PMID: 32245963 PMCID: PMC7125203 DOI: 10.1038/s41467-020-15443-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/02/2020] [Indexed: 12/05/2022] Open
Abstract
The cortex modulates activity in superior colliculus via a direct projection. What is largely unknown is whether (and if so how) the superior colliculus modulates activity in the cortex. Here, we investigate this issue and show that optogenetic activation of superior colliculus changes the input-output relationship of neurons in somatosensory cortex, enhancing responses to low amplitude whisker deflections. While there is no direct pathway from superior colliculus to somatosensory cortex, we found that activation of superior colliculus drives spiking in the posterior medial (POm) nucleus of the thalamus via a powerful monosynaptic pathway. Furthermore, POm neurons receiving input from superior colliculus provide monosynaptic excitatory input to somatosensory cortex. Silencing POm abolished the capacity of superior colliculus to modulate cortical whisker responses. Our findings indicate that the superior colliculus, which plays a key role in attention, modulates sensory processing in somatosensory cortex via a powerful di-synaptic pathway through the thalamus.
Collapse
Affiliation(s)
- Saba Gharaei
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia.
| | - Suraj Honnuraiah
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia
| | - Greg J Stuart
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia.
| |
Collapse
|
15
|
Fassihi A, Zuo Y, Diamond ME. Making sense of sensory evidence in the rat whisker system. Curr Opin Neurobiol 2019; 60:76-83. [PMID: 31816523 DOI: 10.1016/j.conb.2019.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022]
Abstract
In natural environments, choices frequently must be made on the basis of complex and ambiguous streams of sensory input. There are advantages inherent to rapid decision making. Choices are better grounded, however, if information is acquired and accumulated over time. In primate visual motion perception, sensory evidence is accumulated up to a limit, at which point the brain commits to a choice. Recalling the models evoked for primate visual perception, recent studies in the rat vibrissal sensorimotor system, using a number of behavioral paradigms, show that perceptual decision making is characterized by the integration of sensory evidence over time. In this integrative process, vibrissal primary somatosensory cortex (vS1 and vS2) act not as the integrator, but as the distributor of sensory information to downstream regions.
Collapse
Affiliation(s)
| | - Yangfang Zuo
- Institute of Nerosciences, Chinese Academy of Sciences, China
| | - Mathew E Diamond
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
16
|
Adibi M. Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Front Syst Neurosci 2019; 13:40. [PMID: 31496942 PMCID: PMC6712080 DOI: 10.3389/fnsys.2019.00040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.
Collapse
Affiliation(s)
- Mehdi Adibi
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Texture Identification by Bounded Integration of Sensory Cortical Signals. Curr Biol 2019; 29:1425-1435.e5. [DOI: 10.1016/j.cub.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 11/17/2022]
|
18
|
Zuo Y, Diamond ME. Rats Generate Vibrissal Sensory Evidence until Boundary Crossing Triggers a Decision. Curr Biol 2019; 29:1415-1424.e5. [PMID: 31006570 DOI: 10.1016/j.cub.2019.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Behaviors in which primates collect externally generated streams of sensory evidence, such as judgment of random dot motion direction, are explained by a bounded integration decision model. Does this model extend to rodents, and does it account for behavior in which the motor system generates evidence through interactions with the environment? In this study, rats palpated surfaces to identify the texture before them, showing marked trial-to-trial variability in the number of touches prior to expressing their choice. By high-speed video, we tracked whisker kinematic features and characterized how they encoded the contacted texture. Next, we quantified the evidence for each candidate texture transmitted on each touch by the specified whisker kinematic features. The instant of choice was well fit by modeling the brain as an integrator that gives the greatest weight to vibrissal evidence on first touch and exponentially less weight to evidence on successive touches; according to this model, the rat makes a decision when the accumulated quantity of evidence for one texture reaches a boundary. In summary, evidence appears to be accumulated within the brain until sufficient to support a well-grounded choice. These findings extend the framework of bounded sensory integration from primates to rodents and from passively received evidence to evidence that is actively generated by the sensorimotor system.
Collapse
Affiliation(s)
- Yanfang Zuo
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
19
|
Lee CCY, Clifford CWG, Arabzadeh E. Temporal cueing enhances neuronal and behavioral discrimination performance in rat whisker system. J Neurophysiol 2019; 121:1048-1058. [DOI: 10.1152/jn.00604.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since sensory systems operate with a finite quantity of processing resources, an animal would benefit from prioritizing processing of sensory stimuli within a time window that is expected to provide key information. This behavioral manifestation of such prioritization is known as attention. Here, we investigate attention with temporal cueing and its neuronal correlates in the rat primary vibrissal somatosensory (vS1) cortex. Rats were trained in a simple whisker vibration detection task. A vibration was presented at one of two spatial locations (left or right), sometimes after an unknown time interval and sometimes after receiving an auditory cue. The auditory cue provided temporal but not spatial information about the vibration. We found that for all rats ( n = 6), the auditory cue consistently enhanced detection of the vibration stimulus. Neuronal activity in vS1 cortex reflected the observed behavioral enhancement from temporal cueing with single units responded differentially to the whisker vibration stimulus when it was temporally predicted by the auditory cue, exhibiting an enhanced signal-to-noise ratio. Our findings indicate that rats are capable of prioritizing processing within a specified time window and provide evidence that the primary sensory cortex may participate in the temporal allocation of resources. NEW & NOTEWORTHY We demonstrate a novel paradigm of temporal cueing in rats. In a two-alternative whisker detection task, an auditory cue provided information about the timing of the stimulus but not the correct choice. In the presence of cue, detection was faster and more accurate, and neuronal activity from the primary somatosensory cortex revealed enhanced representation of vibrations. These results thus establish the rat as an alternative model organism to primates for studying temporal attention.
Collapse
Affiliation(s)
- Conrad C. Y. Lee
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| | - Colin W. G. Clifford
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
20
|
Meijer GT, Mertens PEC, Pennartz CMA, Olcese U, Lansink CS. The circuit architecture of cortical multisensory processing: Distinct functions jointly operating within a common anatomical network. Prog Neurobiol 2019; 174:1-15. [PMID: 30677428 DOI: 10.1016/j.pneurobio.2019.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Our perceptual systems continuously process sensory inputs from different modalities and organize these streams of information such that our subjective representation of the outside world is a unified experience. By doing so, they also enable further cognitive processing and behavioral action. While cortical multisensory processing has been extensively investigated in terms of psychophysics and mesoscale neural correlates, an in depth understanding of the underlying circuit-level mechanisms is lacking. Previous studies on circuit-level mechanisms of multisensory processing have predominantly focused on cue integration, i.e. the mechanism by which sensory features from different modalities are combined to yield more reliable stimulus estimates than those obtained by using single sensory modalities. In this review, we expand the framework on the circuit-level mechanisms of cortical multisensory processing by highlighting that multisensory processing is a family of functions - rather than a single operation - which involves not only the integration but also the segregation of modalities. In addition, multisensory processing not only depends on stimulus features, but also on cognitive resources, such as attention and memory, as well as behavioral context, to determine the behavioral outcome. We focus on rodent models as a powerful instrument to study the circuit-level bases of multisensory processes, because they enable combining cell-type-specific recording and interventional techniques with complex behavioral paradigms. We conclude that distinct multisensory processes share overlapping anatomical substrates, are implemented by diverse neuronal micro-circuitries that operate in parallel, and are flexibly recruited based on factors such as stimulus features and behavioral constraints.
Collapse
Affiliation(s)
- Guido T Meijer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Paul E C Mertens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Umberto Olcese
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Carien S Lansink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2019; 12:64. [PMID: 30670952 PMCID: PMC6331430 DOI: 10.3389/fnsys.2018.00064] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research. A common observation in awake rodents is the rapid change in spontaneous cortical activity from high-amplitude, low-frequency (LF) fluctuations, when animals are quiet, to faster and smaller fluctuations when animals are active. This transition is typically thought of as a change in global brain state but recent work has shown variation in cortical states across regions, indicating the presence of a fine spatial scale control system. In sensory areas, the cortical state change is mediated by at least two convergent inputs, one from the thalamus and the other from cholinergic inputs in the basal forebrain. Cortical states have a major impact on the balance of activity between specific subtypes of neurons, on the synchronization between nearby neurons, as well as the functional coupling between distant cortical areas. This reorganization of the activity of cortical networks strongly affects sensory processing. Thus cortical states provide a dynamic control system for the moment-by-moment regulation of cortical processing.
Collapse
Affiliation(s)
- James F. A. Poulet
- Neural Circuits and Behaviour, Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, University Lyon 1, Lyon, France
| |
Collapse
|
22
|
Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology 2018; 138:118-129. [DOI: 10.1016/j.neuropharm.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
|
23
|
Barrel Cortex: What is it Good for? Neuroscience 2018; 368:3-16. [DOI: 10.1016/j.neuroscience.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
|
24
|
Information Processing Across Behavioral States: Modes of Operation and Population Dynamics in Rodent Sensory Cortex. Neuroscience 2018; 368:214-228. [DOI: 10.1016/j.neuroscience.2017.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/24/2022]
|
25
|
Ranjbar-Slamloo Y, Arabzadeh E. High-velocity stimulation evokes "dense" population response in layer 2/3 vibrissal cortex. J Neurophysiol 2016; 117:1218-1228. [PMID: 28003414 DOI: 10.1152/jn.00815.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
Supragranular layers of sensory cortex are known to exhibit sparse firing. In rodent vibrissal cortex, a small fraction of neurons in layer 2 and 3 (L2/3) respond to whisker stimulation. In this study, we combined whole cell recording and two-photon imaging in anesthetized mice and quantified the synaptic response and spiking profile of L2/3 neurons. Previous literature has shown that neurons across layers of vibrissal cortex are tuned to the velocity of whisker movement. We therefore used a broad range of stimuli that included the standard range of velocities (0-1.2 deg/ms) and extended to a "sharp" high-velocity deflection (3.8 deg/ms). Consistent with previous literature, whole cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in the majority of neurons. The action potential threshold of spikes evoked by the sharp stimulus was significantly lower than that of the spontaneous spikes. Juxtacellular recordings confirmed that application of sharp stimulus to single or multiple whiskers produced temporally precise spiking with minimal trial-to-trial spike count variability (Fano factors equal or close to the theoretical minimum). Two-photon imaging further confirmed that most neurons that were not responsive to the standard deflections responded to the sharp stimulus. Altogether, our results indicate that sparseness in L2/3 cortex depends on the choice of stimulus: strong single- or multiwhisker stimulation can induce the transition from sparse to "dense" population response.NEW & NOTEWORTHY In superficial layers of sensory cortex, only a small fraction of neurons fire most of the spontaneous and sensory evoked spikes. However, the functional relevance of such "sparse" activity remains unknown. We found that a "dense" population response is evoked by high-velocity micromotions applied to whiskers. Our results suggest that flashes of precisely timed population response on an almost silent background can provide a high capacity for coding of ecologically salient stimuli.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; and.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; and .,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| |
Collapse
|