1
|
Li Z, Zhang L, Zhang F, Yue L, Hu L. Deciphering Authentic Nociceptive Thalamic Responses in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0348. [PMID: 38617991 PMCID: PMC11014087 DOI: 10.34133/research.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
The thalamus and its cortical connections play a pivotal role in pain information processing, yet the exploration of its electrophysiological responses to nociceptive stimuli has been limited. Here, in 2 experiments we recorded neural responses to nociceptive laser stimuli in the thalamic (ventral posterior lateral nucleus and medial dorsal nucleus) and cortical regions (primary somatosensory cortex [S1] and anterior cingulate cortex) within the lateral and medial pain pathways. We found remarkable similarities in laser-evoked brain responses that encoded pain intensity within thalamic and cortical regions. Contrary to the expected temporal sequence of ascending information flow, the recorded thalamic response (N1) was temporally later than its cortical counterparts, suggesting that it may not be a genuine thalamus-generated response. Importantly, we also identified a distinctive component in the thalamus, i.e., the early negativity (EN) occurring around 100 ms after the onset of nociceptive stimuli. This EN component represents an authentic nociceptive thalamic response and closely synchronizes with the directional information flow from the thalamus to the cortex. These findings underscore the importance of isolating genuine thalamic neural responses, thereby contributing to a more comprehensive understanding of the thalamic function in pain processing. Additionally, these findings hold potential clinical implications, particularly in the advancement of closed-loop neuromodulation treatments for neurological diseases targeting this vital brain region.
Collapse
Affiliation(s)
- Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
2
|
Velasco E, Zaforas M, Acosta MC, Gallar J, Aguilar J. Ocular surface information seen from the somatosensory thalamus and cortex. J Physiol 2024; 602:1405-1426. [PMID: 38457332 DOI: 10.1113/jp285008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Neuroscience in Physiotherapy (NiP), Independent Research Group, Elche, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Marta Zaforas
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Juan Aguilar
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
- Grupo de Investigación Multidisciplinar en Cuidados, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
3
|
Strohman A, Payne B, In A, Stebbins K, Legon W. Low-Intensity Focused Ultrasound to the Human Dorsal Anterior Cingulate Attenuates Acute Pain Perception and Autonomic Responses. J Neurosci 2024; 44:e1011232023. [PMID: 38182418 PMCID: PMC10883612 DOI: 10.1523/jneurosci.1011-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6 M/10 F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
4
|
Steenken L, Conde RM, Müller JK, Escolano-Lozano F, Birklein F, Dimova V. Nociceptive two-point discrimination acuity and body representation failure in polyneuropathy. Scand J Pain 2023; 23:66-75. [PMID: 35922150 DOI: 10.1515/sjpain-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Although patients' complaints suggest polyneuropathy (PNP) and neuropathic pain, routine investigations do not always support the diagnosis. Assessing two-point-pain discrimination thresholds (2ptDT) and quantify body representation disturbances might be useful to close this diagnostic gap. METHODS Pinprick pain and laser-heat pain perception thresholds and 2ptDT on hands, forearms, lower legs and feet were obtained in 20 PNP patients (mean age: 57.6 ± 13.9) and 20 healthy subjects (mean age: 50.6 ± 4.7 years). Body representation disturbances were assessed by self-estimating feet size and the Bath CRPS body perception disturbances questionnaire adapted for PNP. RESULTS Pain perception thresholds and laser-heat pain 2ptDT were unaltered, but patients had higher pinprick pain 2ptDT then the healthy subjects. The 2ptDT for pinprick at the hands discriminate best between groups (U-test; p=0.001). Furthermore, patients estimated their feet longer than they are. In subsequent multivariate discriminant analyses, 2ptDT for pinprick pain at the hands, 2ptDT for laser-heat pain and the perception thresholds for laser-heat pain at the feet classified 85% of PNP vs. HC correctly. The combination of 2ptDT for pinprick pain at the hands, pinprick pain perception thresholds at the calves and foot length estimation differentiates painful vs. non-painful PNPs correctly in 90% of the cases. CONCLUSIONS Testing 2ptDT for painful pinprick stimuli at the hands and asking for foot length estimation might add to diagnostic accuracy in painful PNP.
Collapse
Affiliation(s)
- Livia Steenken
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Rodrigo M Conde
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Neurosciences and Behavior Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julia K Müller
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fabiola Escolano-Lozano
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Violeta Dimova
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Higinio-Rodríguez F, Rivera-Villaseñor A, Calero-Vargas I, López-Hidalgo M. From nociception to pain perception, possible implications of astrocytes. Front Cell Neurosci 2022; 16:972827. [PMID: 36159392 PMCID: PMC9492445 DOI: 10.3389/fncel.2022.972827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Astrocytes are determinants for the functioning of the CNS. They respond to neuronal activity with calcium increases and can in turn modulate synaptic transmission, brain plasticity as well as cognitive processes. Astrocytes display sensory-evoked calcium responses in different brain structures related to the discriminative system of most sensory modalities. In particular, noxious stimulation evoked calcium responses in astrocytes in the spinal cord, the hippocampus, and the somatosensory cortex. However, it is not clear if astrocytes are involved in pain. Pain is a private, personal, and complex experience that warns us about potential tissue damage. It is a perception that is not linearly associated with the amount of tissue damage or nociception; instead, it is constructed with sensory, cognitive, and affective components and depends on our previous experiences. However, it is not fully understood how pain is created from nociception. In this perspective article, we provide an overview of the mechanisms and neuronal networks that underlie the perception of pain. Then we proposed that coherent activity of astrocytes in the spinal cord and pain-related brain areas could be important in binding sensory, affective, and cognitive information on a slower time scale.
Collapse
Affiliation(s)
- Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Mónica López-Hidalgo,
| |
Collapse
|
6
|
Li H, Li X, Wang J, Gao F, Wiech K, Hu L, Kong Y. Pain-related reorganization in the primary somatosensory cortex of patients with postherpetic neuralgia. Hum Brain Mapp 2022; 43:5167-5179. [PMID: 35751551 PMCID: PMC9812237 DOI: 10.1002/hbm.25992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
Studies on functional and structural changes in the primary somatosensory cortex (S1) have provided important insights into neural mechanisms underlying several chronic pain conditions. However, the role of S1 plasticity in postherpetic neuralgia (PHN) remains elusive. Combining psychophysics and magnetic resonance imaging (MRI), we investigated whether pain in PHN patients is linked to S1 reorganization as compared with healthy controls. Results from voxel-based morphometry showed no structural differences between groups. To characterize functional plasticity, we compared S1 responses to noxious laser stimuli of a fixed intensity between both groups and assessed the relationship between S1 activation and spontaneous pain in PHN patients. Although the intensity of evoked pain was comparable in both groups, PHN patients exhibited greater activation in S1 ipsilateral to the stimulated hand. Pain-related activity was identified in contralateral superior S1 (SS1) in controls as expected, but in bilateral inferior S1 (IS1) in PHN patients with no overlap between SS1 and IS1. Contralateral SS1 engaged during evoked pain in controls encoded spontaneous pain in patients, suggesting functional S1 reorganization in PHN. Resting-state fMRI data showed decreased functional connectivity between left and right SS1 in PHN patients, which scaled with the intensity of spontaneous pain. Finally, multivariate pattern analyses (MVPA) demonstrated that BOLD activity and resting-state functional connectivity of S1 predicted within-subject variations of evoked and spontaneous pain intensities across groups. In summary, functional reorganization in S1 might play a key role in chronic pain related to PHN and could be a potential treatment target in this patient group.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Li
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Jiyuan Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Gao
- Department of Pain MedicinePeking University People's HospitalBeijingChina
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Li Hu
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| |
Collapse
|
7
|
Zheng K, Chen C, Yang S, Wang X. Aerobic Exercise Attenuates Pain Sensitivity: An Event-Related Potential Study. Front Neurosci 2021; 15:735470. [PMID: 34630022 PMCID: PMC8494006 DOI: 10.3389/fnins.2021.735470] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, electroencephalography (EEG) was utilized to explore the neurophysiological mechanisms of aerobic exercise-induced hypoalgesia (EIH) and provide a theoretical basis for the application of aerobic exercise in pain assessment and treatment. Forty-five healthy subjects were randomly divided into moderate-intensity aerobic exercise [70% heart rate reserve (HRR)], low-intensity aerobic exercise (50% HRR), or control groups (sitting). Aerobic exercise was performed with cycling. Pressure pain threshold (PPT), heat pain threshold (HPT), event-related potential (ERP) induced by contact heat stimulus and pain scoring were measured before and after the intervention. We found that moderate-intensity aerobic exercise can increase the PPT (rectus femoris: t = -2.71, p = 0.017; tibialis anterior muscle: t = -2.36, p = 0.033) and HPT (tibialis anterior muscle: t = -2.219, p = 0.044) of proximal intervention sites rather than distal sites, and decreased pain scorings of contact heat stimulus. After moderate-intensity aerobic exercise, alpha oscillation power reflecting the central descending inhibitory function was enhanced (t = -2.31, p < 0.05). Low-intensity aerobic exercise mainly reduced the pain unpleasantness rating (Block 1: t = 2.415, p = 0.030; Block 2: t = 3.287, p = 0.005; Block 4: t = 2.646, p = 0.019; Block 5: t = 2.567, p = 0.022). Aerobic exercise had an overall EIH effect. Its hypoalgesic effect was related to exercise intensity and affected by the site and type of pain stimulus. Moderate-intensity aerobic exercise effectively reduced the sensitivity to various painful stimuli, and low-intensity aerobic exercise selectively inhibited the negative emotional pain response. The hypoalgesic mechanism of aerobic exercise involves the enhancement of the central descending inhibitory function.
Collapse
Affiliation(s)
- Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Changcheng Chen
- Department of Rehabilitation Medicine, Qingtian People's Hospital, Zhejiang, China
| | - Suyong Yang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
8
|
Forni M, Thorbergsson PT, Thelin J, Schouenborg J. 3D microelectrode cluster and stimulation paradigm yield powerful analgesia without noticeable adverse effects. SCIENCE ADVANCES 2021; 7:eabj2847. [PMID: 34623922 PMCID: PMC8500508 DOI: 10.1126/sciadv.abj2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The lack of satisfactory treatment for persistent pain profoundly impairs the quality of life for many patients. Stimulation of brainstem pain control systems can trigger powerful analgesia, but their complex network organization frequently prevents separation of analgesia from side effects. To overcome this long-standing challenge, we developed a biocompatible gelatin-embedded cluster of ultrathin microelectrodes that enables fine-tuned, high-definition three-dimensional stimulation in periaqueductal gray/dorsal raphe nucleus in awake rats. Analgesia was assessed from both motor reactions and intracortical signals, corresponding to pain-related signals in humans. We could select an individual-specific subset of microelectrodes in each animal that reliably provided strong pain inhibition during normal and hyperalgesia conditions, without noticeable behavioral side effects. Gait, spontaneous cortical activity at rest, and cortical tactile responses were minimally affected, indicating a highly selective action. In conclusion, our developed biocompatible microelectrode cluster and stimulation paradigm reliably enabled powerful, fine-tuned, and selective analgesia without noticeable side effects.
Collapse
Affiliation(s)
- Matilde Forni
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
| | - Palmi Thor Thorbergsson
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
| | - Jonas Thelin
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
- NanoLund, Center for Nanoscience, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| |
Collapse
|
9
|
Zhang H, Lu X, Bi Y, Hu L. A modality selective effect of functional laterality in pain detection sensitivity. Sci Rep 2021; 11:6883. [PMID: 33767243 PMCID: PMC7994376 DOI: 10.1038/s41598-021-85111-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to detect environmental changes is essential to determine the appropriate reaction when facing potential threats. Both detection and reaction functions are critical to survival, and the superior performance of motor reaction for the dominant hand is well recognized in humans. However, it is not clear whether there exists laterality in sensitivity to detect external changes and whether the possible laterality is associated with sensory modality and stimulus intensity. Here, we tested whether the perceptual sensitivity and electrophysiological responses elicited by graded sensory stimuli (i.e., nociceptive somatosensory, non-nociceptive somatosensory, auditory, and visual) that were delivered on/near the left and right hands would be different for right-handed individuals. We observed that perceived intensities and most brain responses were significantly larger when nociceptive stimuli were delivered to the left side (i.e., the non-dominant hand) than to the right side (i.e., the dominant hand). No significant difference was observed between the two sides for other modalities. The higher sensitivity to detect nociceptive stimuli for the non-dominant hand would be important to provide a prompt reaction to noxious events, thus compensating for its worse motor performance. This laterality phenomenon should be considered when designing experiments for pain laboratory studies and evaluating regional sensory abnormalities for pain patients.
Collapse
Affiliation(s)
- Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Lu X, Yao X, Thompson WF, Hu L. Movement-induced hypoalgesia: behavioral characteristics and neural mechanisms. Ann N Y Acad Sci 2021; 1497:39-56. [PMID: 33691345 DOI: 10.1111/nyas.14587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
Pain is essential for our survival because it helps to protect us from severe injuries. Nociceptive signals may be exacerbated by continued physical activities but can also be interrupted or overridden by physical movements, a process called movement-induced hypoalgesia. Several neural mechanisms have been proposed to account for this effect, including the reafference principle, non-nociceptive interference, and top-down descending modulation. Given that the hypoalgesic effects of these mechanisms temporally overlap during movement execution, it is unclear whether movement-induced hypoalgesia results from a single neural mechanism or from the joint action of multiple neural mechanisms. To address this question, we conducted five experiments on 129 healthy humans by assessing the hypoalgesic effect after movement execution. Combining psychophysics and electroencephalographic recordings, we quantified the relationship between the strength of voluntary movement and the hypoalgesic effect, as well as the temporal and spatial characteristics of the hypoalgesic effect. Our findings demonstrated that movement-induced hypoalgesia results from the joint action of multiple neural mechanisms. This investigation is the first to disentangle the distinct contributions of different neural mechanisms to the hypoalgesic effect of voluntary movement, which extends our understanding of sensory attenuation arising from voluntary movement and may prove instrumental in developing new strategies for pain management.
Collapse
Affiliation(s)
- Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinru Yao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Intracortical Localization of a Promising Pain Biomarker. J Neurosci 2021; 40:9549-9551. [PMID: 33298597 DOI: 10.1523/jneurosci.1520-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022] Open
|
12
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
13
|
Somervail R, Zhang F, Novembre G, Bufacchi RJ, Guo Y, Crepaldi M, Hu L, Iannetti GD. Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats. Cereb Cortex 2021; 31:949-960. [PMID: 33026425 PMCID: PMC7786352 DOI: 10.1093/cercor/bhaa267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022] Open
Abstract
Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.
Collapse
Affiliation(s)
- R Somervail
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - F Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - M Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - L Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
14
|
New Insights into Cutaneous Laser Stimulation - Dependency on Skin and Laser Type. Neuroscience 2020; 448:71-84. [PMID: 32931847 DOI: 10.1016/j.neuroscience.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022]
Abstract
Cutaneous laser stimulation is a proficient tool to investigate the function of the nociceptive system. However, variations in laser-skin interactions, causes by different skin anatomies and laser wavelength, affects the robustness of nociceptor activation. Thus, thoroughly understanding how the skin is heated by a laser pulse is important to characterize the thermal response properties of nociceptors. The study aim was to investigate how skin type and laser wavelength influences nociceptor activation during laser stimulation. Ten healthy subjects were exposed to brief CO2 (low skin penetrance) and Nd:YAP (high skin penetrance) laser stimuli delivered to the dorsum and palm of the hand, using three different intensities. Reaction times and perception intensities were recorded. A computational model simulated heat transfer in the skin and nociceptor activation in different skin types across different wavelengths and intensities. Intensity ratings were significantly lower and reaction-times significantly increased for CO2 laser stimuli in the palm compared to the dorsum. This was not the case for Nd:YAP laser stimuli. The computational model showed that these differences can be explained by the different skin absorption of CO2 and Nd:YAP lasers. For CO2 laser stimuli, the thicker stratum corneum of the glabrous skin reduces nociceptor activation, whereas the high penetrating Nd:YAP laser elicits a similar nociceptor activation, irrespective of skin type. Nociceptor activation during laser stimulation highly depends on skin composition and laser wavelength, especially for lasers having a low penetrance wavelength. A computational model showed that this difference could be explained primarily due to differences in skin composition.
Collapse
|
15
|
Buentjen L, Vicheva P, Chander BS, Beccard SA, Coutts C, Azañón E, Stenner MP, Deliano M. Spatial Filtering of Electroencephalography Reduces Artifacts and Enhances Signals Related to Spinal Cord Stimulation (SCS). Neuromodulation 2020; 24:1317-1326. [PMID: 32969569 DOI: 10.1111/ner.13266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES How spinal cord stimulation (SCS) in its different modes suppresses pain is poorly understood. Mechanisms of action may reside locally in the spinal cord, but also involve a larger network including subcortical and cortical brain structures. Tonic, burst, and high-frequency modes of SCS can, in principle, entrain distinct temporal activity patterns in this network, but finally have to yield specific effects on pain suppression. Here, we employ high-density electroencephalography (EEG) and recently developed spatial filtering techniques to reduce SCS artifacts and to enhance EEG signals specifically related to neuromodulation by SCS. MATERIALS AND METHODS We recorded high-density resting-state EEGs in patients suffering from pain of various etiologies under different modes of SCS. We established a pipeline for the robust spectral analysis of oscillatory brain activity during SCS, which includes spatial filtering for attenuation of pulse artifacts and enhancement of brain activity potentially modulated by SCS. RESULTS In sensor regions responsive to SCS, neuromodulation strongly reduced activity in the theta and low alpha range (6-10 Hz) in all SCS modes. Results were consistent in all patients, and in accordance with thalamocortical dysrhythmia hypothesis of pain. Only in the tonic mode showing paresthesia as side effect, SCS also consistently and strongly reduced high-gamma activity (>84 Hz). CONCLUSIONS EEG spectral analysis combined with spatial filtering allows for a spatially and temporally specific assessment of SCS-related, neuromodulatory EEG activity, and may help to disentangle therapeutic and side effects of SCS.
Collapse
Affiliation(s)
- Lars Buentjen
- Department of Stereotactic Neurosurgery, University Hospital, Magdeburg, Germany
| | - Petya Vicheva
- Translational Behavioral Physiology Group, Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - B S Chander
- AG Physiology of Motor Control, Department of Behavioral Neurology, LIN, Magdeburg, Germany
| | | | - Christopher Coutts
- Department of Stereotactic Neurosurgery, University Hospital, Magdeburg, Germany
| | - Elena Azañón
- Somatosensory & Body Lab, Department of Psychology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Max-Philipp Stenner
- AG Physiology of Motor Control, Department of Behavioral Neurology, LIN, Magdeburg, Germany
| | - Matthias Deliano
- Translational Behavioral Physiology Group, Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| |
Collapse
|
16
|
Panchuelo RMS, Eldeghaidy S, Marshall A, McGlone F, Francis ST, Favorov O. A nociresponsive specific area of human somatosensory cortex within BA3a: BA3c? Neuroimage 2020; 221:117187. [PMID: 32711068 PMCID: PMC7762820 DOI: 10.1016/j.neuroimage.2020.117187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023] Open
Abstract
It is well recognized that in primates, including humans, noxious body stimulation evokes a neural response in the posterior bank of the central sulcus, in Brodmann cytoarchitectonic subdivisions 3b and 1 of the primary somatosensory cortex. This response is associated with the 1st/sharp pain and contributes to sensory discriminative aspects of pain perception and spatial localization of the noxious stimulus. However, neurophysiological studies in New World monkeys predict that in humans noxious stimulation also evokes a separate neural response-mediated by C-afferent drive and associated with the 2nd/burning pain-in the depth of the central sulcus in Brodmann area 3a (BA3a) at the transition between the somatosensory and motor cortices. To evoke such a response, it is necessary to use multi-second duration noxious stimulation, rather than brief laser pulses. Given the limited human pain-imaging literature on cortical responses induced by C-nociceptive input specifically within BA3a, here we used high spatial resolution 7T fMRI to study the response to thermonoxious skin stimulation. We observed the predicted response of BA3a in the depth of the central sulcus in five human volunteers. Review of the available evidence suggests that the nociresponsive region in the depth of the central sulcus is a structurally and functionally distinct cortical area that should not be confused with proprioceptive BA3a. It is most likely engaged in interoception and control of the autonomic nervous system, and contributes to the sympathetic response to noxious stimulation, arguably the most intolerable aspect of pain experience. Ablation of this region has been shown to reduce pain sensibility and might offer an effective means of ameliorating some pathological pain conditions.
Collapse
Affiliation(s)
- Rosa M Sanchez Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Sally Eldeghaidy
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK; Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Andrew Marshall
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Francis McGlone
- School of natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina, CB #7575, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Su Q, Song Y, Zhao R, Liang M. A review on the ongoing quest for a pain signature in the human brain. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Developing an objective biomarker for pain assessment is crucial for understanding neural coding mechanisms of pain in the human brain as well as for effective treatment of pain disorders. Neuroimaging techniques have been proven to be powerful tools in the ongoing quest for a pain signature in the human brain. Although there is still a long way to go before achieving a truly successful pain signature based on neuroimaging techniques, important progresses have been made through great efforts in the last two decades by the Pain Society. Here, we focus on neural responses to transient painful stimuli in healthy people, and review the relevant studies on the identification of a neuroimaging signature for pain.
Collapse
Affiliation(s)
- Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin 300060, China
- These authors contributed equally to this work
| | - Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
- These authors contributed equally to this work
| | - Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
18
|
Lu X, Thompson WF, Zhang L, Hu L. Music Reduces Pain Unpleasantness: Evidence from an EEG Study. J Pain Res 2019; 12:3331-3342. [PMID: 31853196 PMCID: PMC6916681 DOI: 10.2147/jpr.s212080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Music is sometimes used as an adjunct to pain management. However, there is limited understanding of by what means music modulates pain perception and how the brain responds to nociceptive inputs while listening to music, because clinical practice typically involves the coexistence of multiple therapeutic interventions. To address this challenge, laboratory studies with experimental and control conditions are needed. METHODS In the present investigation, we delivered nociceptive laser stimuli on 30 participants under three conditions - participants were sitting in silence, listening to their preferred music, or listening to white noise. Differences among conditions were quantified by self-reports of pain intensity and unpleasantness, and brain activity sampled by electroencephalography (EEG). RESULTS Compared with the noise and silence conditions, participants in the music condition reported lower ratings on pain unpleasantness, as reflected by reduced brain oscillations immediately prior to the nociceptive laser stimulus at frequencies of 4-15 Hz in EEG. In addition, participants showed smaller P2 amplitudes in laser-evoked potentials (LEPs) when they were listening to music or white noise in comparison to sitting in silence. These findings suggest that a general modulation effect of sounds on pain, with a specific reduction of pain unpleasantness induced by the positive emotional impact. CONCLUSION Music may serve as a real-time regulator to modulate pain unpleasantness. Results are discussed in view of current understandings of music-induced analgesia.
Collapse
Affiliation(s)
- Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - William Forde Thompson
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence in Cognition and Its Disorders, Sydney, New South Wales, Australia
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Mouraux A, Iannetti GD. The search for pain biomarkers in the human brain. Brain 2019; 141:3290-3307. [PMID: 30462175 PMCID: PMC6262221 DOI: 10.1093/brain/awy281] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Non-invasive functional brain imaging is used more than ever to investigate pain in health and disease, with the prospect of finding new means to alleviate pain and improve patient wellbeing. The observation that several brain areas are activated by transient painful stimuli, and that the magnitude of this activity is often graded with pain intensity, has prompted researchers to extract features of brain activity that could serve as biomarkers to measure pain objectively. However, most of the brain responses observed when pain is present can also be observed when pain is absent. For example, similar brain responses can be elicited by salient but non-painful auditory, tactile and visual stimuli, and such responses can even be recorded in patients with congenital analgesia. Thus, as argued in this review, there is still disagreement on the degree to which current measures of brain activity exactly relate to pain. Furthermore, whether more recent analysis techniques can be used to identify distributed patterns of brain activity specific for pain can be only warranted using carefully designed control conditions. On a more general level, the clinical utility of current pain biomarkers derived from human functional neuroimaging appears to be overstated, and evidence for their efficacy in real-life clinical conditions is scarce. Rather than searching for biomarkers of pain perception, several researchers are developing biomarkers to achieve mechanism-based stratification of pain conditions, predict response to medication and offer personalized treatments. Initial results with promising clinical perspectives need to be further tested for replicability and generalizability.
Collapse
Affiliation(s)
- André Mouraux
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
20
|
Zhang F, Wang F, Yue L, Zhang H, Peng W, Hu L. Cross-Species Investigation on Resting State Electroencephalogram. Brain Topogr 2019; 32:808-824. [DOI: 10.1007/s10548-019-00723-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023]
|
21
|
Characterizing the Short-Term Habituation of Event-Related Evoked Potentials. eNeuro 2018; 5:eN-NWR-0014-18. [PMID: 30280121 PMCID: PMC6162078 DOI: 10.1523/eneuro.0014-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
Fast-rising sensory events evoke a series of functionally heterogeneous event-related potentials (ERPs). Stimulus repetition at 1 Hz induces a strong habituation of the largest ERP responses, the vertex waves (VWs). VWs are elicited by stimuli regardless of their modality, provided that they are salient and behaviorally relevant. In contrast, the effect of stimulus repetition on the earlier sensory components of ERPs has been less explored, and the few existing results are inconsistent. To characterize how the different ERP waves habituate over time, we recorded the responses elicited by 60 identical somatosensory stimuli (activating either non-nociceptive Aβ or nociceptive Aδ afferents), delivered at 1 Hz to healthy human participants. We show that the well-described spatiotemporal sequence of lateralized and vertex ERP components elicited by the first stimulus of the series is largely preserved in the smaller-amplitude, habituated response elicited by the last stimuli of the series. We also found that the earlier lateralized sensory wave habituates across the 60 trials following the same decay function of the VWs: this decay function is characterized by a large drop at the first stimulus repetition followed by smaller decreases at subsequent repetitions. Interestingly, the same decay functions described the habituation of ERPs elicited by repeated non-nociceptive and nociceptive stimuli. This study provides a neurophysiological characterization of the effect of prolonged and repeated stimulation on the main components of somatosensory ERPs. It also demonstrates that both lateralized waves and VWs are obligatory components of ERPs elicited by non-nociceptive and nociceptive stimuli.
Collapse
|